Use of molecular enzymes in the treatment of chronic disorders

Alireza Heidari
Faculty of Chemistry, California South University, USA

Correspondence: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA, Email Scholar.Researcher.Scientist@gmail.com, Alireza.Heidari@calsu.us

Received: July 09, 2018 | Published: August 01, 2018

Copyright© 2018 Heidari. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Keywords: essential thrombocythemia, polycythemia vera, Skatole, Pterodactyladiene, tie fighter

Editorial

Advances in nanotechnology cause that many researchers try to solve their problems by introducing the nanoscale science to their research area. Use of nanomaterials such as Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCarboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano molecules as molecular enzymes and drug targets in oncology science for Chronic Myelogenous Leukemia, Polycythemia Vera, Primary Myelofibrosis (Chronic Idiopathic Myelofibrosis), Essential Thrombocytocmia, Chronic Neutrophilic Leukemia and Chronic Eosinophilic Leukemia treatment under synchrotron and synchrocyclotron radiations is one of the most important research areas in all over the world (Figure 1). Membrane filtration is common processes for human blood cancer cells purification which face the cancer problem as the most reducing factor of process efficiency. Nanoscale materials such as Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCarboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano molecules (Figure 2) as molecular enzymes and drug targets in oncology science for Chronic Myelogenous Leukemia, Polycythemia Vera, Primary Myelofibrosis (Chronic Idiopathic Myelofibrosis), Essential Thrombocytocmia, Chronic Neutrophilic Leukemia and Chronic Eosinophilic Leukemia treatment under synchrotron and synchrocyclotron radiations are emerging to oncology, specially Chronic Myelogenous Leukemia, Polycythemia Vera, Primary Myelofibrosis (Chronic Idiopathic Myelofibrosis), Essential Thrombocytocmia, Chronic Neutrophilic Leukemia and Chronic Eosinophilic Leukemia treatment, by concept of nanocatalysts, nanosorbents, nanostructure catalytic membranes and nanoparticles enhanced filtration. The objective of this editorial is to provide molecular enzymes and drug targets utilities and deliveries with information regarding to nanoscience. There are many technical issues surrounded the nanomaterials. This editorial was intended to touch on an array of topics including use of nanofiltration in Chronic Myelogenous Leukemia, Polycythemia Vera, Primary Myelofibrosis (Chronic Idiopathic Myelofibrosis), Essential Thrombocytocmia, Chronic Neutrophilic Leukemia and Chronic Eosinophilic Leukemia treatment under synchrotron and synchrocyclotron radiations highlighting the recent advances on the development of novel nanoscale materials and processes for treatment of Chronic Myelogenous Leukemia, Polycythemia Vera, Primary Myelofibrosis (Chronic Idiopathic Myelofibrosis), Essential Thrombocytocmia, Chronic Neutrophilic Leukemia and Chronic Eosinophilic Leukemia under synchrotron and synchrocyclotron radiations. In addition, we discuss the anti–cancer effects of nanomaterilas such as Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCarboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone for human blood cells biological and oncological control and monitoring.

Figure 1: Schematic of a human blood stem cell may become a myeloid stem cell or a lymphoid stem cell. A lymphoid stem cell becomes a white blood cell.

On the other hand, nowadays, on the main biological and oncological concerns is the elimination of the heavy metals toxicity and diseases in disruption of Extracellular Matrix (ECM) proteins and cell adhesion intelligent nanomolecules adjustment in Chronic Myelogenous Leukemia.
Leukemia, Polycythemia Vera, Primary Myelofibrosis (Chronic Idiopathic Myelofibrosis), Essential Thrombocytopenia, Chronic Neutrophilic Leukemia and Chronic Eosinophilic Leukemia treatment using metalloenzymes and under synchrotron and synchrocyclotron radiations, caused by heavy metals polluted human blood that could bring about many health problems to human beings such as blood cancer diseases. In natural environment there are non–organic heavy metals in the different forms of which concentrated large quantities have been spotted. Nanofiltration technology has a good potential for integration with current Chronic Myelogenous Leukemia, Polycythemia Vera, Primary Myelofibrosis (Chronic Idiopathic Myelofibrosis), Essential Thrombocytopenia, Chronic Neutrophilic Leukemia and Chronic Eosinophilic Leukemia treatment to perform cancer control and monitoring. In this editorial, in an attempt to enhance the heavy metals removal with different concentrations feed to a nanofiltration system. For better understanding of effects of operational conditions, different pressures applied as well as varied temperature. Increasing the operational pressure has a positive effect in rejection rate. However, rising the temperature deteriorated the overall heavy metals removal.

![Molecular structure](image)

Figure 2 Molecular structure of (A) Fucitol, (B) Pterodactyladiene, (C) DEDAD or DEADCAT (DiEthyl AzoDiCARboxylaTe), (D) Skatole, (E) the NanoPutians, (F) Thebacon, (G) Pikachurin, (H) Tie Fighter, (I) Spermidine and (J) Mirasorvone Nano molecules.

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

Citation: Heidari A. Use of molecular enzymes in the treatment of chronic disorders. **Canc Oncol Open Access J.** (2018);1(1):12-15.
References

18. Alireza Heidari. Measurement the amount of vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and absorbable calcium (Ca²⁺), iron (II) (Fe²⁺), magnesium (Mg²⁺), phosphate (PO₄⁻) and zinc (Zn²⁺) in apricot using high–performance liquid chromatography (HPLC) and spectroscopic techniques. J Biom Biomiat. 2016;7:292.
19. Alireza Heidari. Spectroscopy and quantum mechanics of the helium dimer (He₂⁺), neon dimer (Ne₂⁺), argon dimer (Ar₂⁺), krypton dimer (Kr₂⁺), xenon dimer (Xe₂⁺), radon dimer(Rn₂⁻) and ununoctium dimer (Uue₂⁻) molecular cations. Chem Sci J. 2016;7:e112.
31. Alireza Heidari. Molecular dynamics and monte–carlo simulations for replacement sugars in insulin resistance, obesity, LDL cholesterol,

52. Alireza Heidari. Graph theoretical analysis of zigzag polyhexamethylene biguanide, polyhexamethylene adipamide, polyhexamethylene biguanide guae and polyhexamethylene biguanide hydrochloride (PHMB) boron nitride nanotubes (BNNTs), amorphous boron nitride nanotubes (a–BNNTs) and hexagonal boron nitride nanotubes (h–BNNTs). J Appl Computat Math. 2016;5:e143.

