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Introduction
After the commercial boom of unconventional reservoirs in North 
America during the past decade, exploration of unconventional 
shale reservoirs has increased significantly.1 Shale reservoirs with 
moveable hydrocarbons are often characterized by high quantities 
of organic matter, which require stimulation methods to exploit the 
hydrocarbons.2-5 Recent advancements in geomechanical operations 
such as hydraulic fracturing have been a break through which enables 
operators to tap resources formerly considered uneconomical.

Many experimental or theoretical studies on the mechanical properties 
of shale reservoirs has been performed which is due to the dependence 
of successful field operations on mechanical properties.1,6-9 However, 
these reservoirs are highly heterogeneous and comprised of variety 
of components such as: clays, various carbonate and clastic minerals 
and high content of organic matter.10 Despite such attempts during 
the last decade, mechanical properties of one of the main constituents 
of a shale reservoir, kerogen or organic marrer, is not thoroughly 
understood. Studies have shown, the presence of organic matter has a 
nonnegligible effect on hydraulic fracturing operations, since kerogen 
is not as stiff as other non-organic minerals.11-13

Generally, conventional geomechanical testing such as uniaxial and 
triaxial compressive strenght, are performed on inch-sized cores in 
the lab.4,5,14-16 While, organic matter is dispersed within the matrix and 
needs high-resolution equipment to perform the test on the pinpointed 

location of this material.7,17 Moreover, understanding organic matter 
properties in terms of maturity and production potential are crucial 
for initial assessment of unconventional plays. This is important 
since the amount of hydrocarbon that can be generated is a function 
of organic matter type and content in the formation along with the 
depth of burial. All these variations make understanding organic 
matter more challenging from both molecular and mechanical point 
of view. Therefore, these complexities of shale plays has made it 
necessary to acquire new analytical methods for both better reservoir 
characterization and reserve assessment.

Raman spectroscopy evaluates molecular vibrations and structural 
order of any material understudies. Thus, any changes in the structure 
of molecules can be detected with the high spatial resolution of Raman 
spectroscopy.18 Different researchers have used Raman spectroscopy 
for structural characterization of carbonaceous materials and maturity 
of organic matter in coals.19,20 Correlation between Raman signals and 
maturity was initially described by Kelemen and Fang21 for kerogen 
in coals. Raman spectroscopy was also used by Tuschel22 in detecting 
the contribution of various minerals in mudrocks. Other researchers 
have also successfully used Raman spectroscopy for thermal maturity 
evaluation of organic matter.4,5,23-25 Structural evolution of organic 
matter during thermal maturation (increase in aromaticity and 
reduction in aliphatic and heteroatoms content) can be reflected on 
Raman signals notably.26

Research 
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In this study, a few samples from the organic rich members of the 
Bakken Formation were selected that are varying in depths and 
thermal maturity levels. We focused to better understand organic 
matter properties by acquiring Raman signals from the organic matter 
only and correlating with geochemical and mechanical properties 
collected from Rock-Eval pyrolysis, %VR and PeakForce AFM.

Samples and measurements
Upper and lower members of the Bakken Formation are organic rich 
shales, and middle member is a mixture of carbonates and clastics. 
The formation was deposited during the Late Devonian and Early 
Mississippian Periods, where upper and lower members became the 

source and middle the reservoir. The formation which is an elliptically 
shaped depression is located in the Williston Basin, spread in North 
Dakota and Montana in the USA and extends into parts of Canada.4,5 
Six samples varying in depth and maturities were selected from 
different wells drilled in the Bakken Formation. In the following 
table (Table 1), various measurements which were performed on the 
samples are summarized. It should be noted that samples are mainly 
type II kerogen and selected from the upper and lower members only.

Vitrinite maturity and Rock-Eval Pyrolysis measurements27-30 were 
carried out on the samples (Table 1) that reflects thermal maturity and 
potential of the organic matter as a source rock.

Table 1 Properties of six samples used in this study

Well Sample depth (ft) TOC (wt%) VRo (%) Tmax (˚C) S1 S2

1 5438 24.71 0.39 419 8 128.70

2 8326 16.27 0.55 428 8.3 90.71

3 9886 15.76 0.57 432 9.27 83.72

4 10555 13.26 0.85 449 0.30 33

5 10725.5 9.04 0.95 450 6.15 13.96

6 11199 16.36 0.93 452 0.70 28

Raman scattering reflects the molecular vibrations and symmetries of 
chemical bonds.31,32 By illuminating a sample with a monochromatic 
light source, energy is exchanged between the light beam and 
molecule (depending on the molecular vibration frequency) which 
leads to a Raman shift.33-35 Considering the response from organic 
matter, two major peaks known as G and D bands are detectable in 
Raman spectrum.22,36 The G band refers to graphite with the origin of 
inplane E2g2 vibrational modes of the carbon atoms in aromatic ring 
structures4,5,37 while the D band originates from a disorder in the atoms 

as a result of the Raman-active A1g symmetry associated with lattice 
defects and discontinuities of the sp2 carbon network.4,5,37

By acquiring spectrum from at least five spots on the surface of each 
sample focused on the organic matter that is detected under optical 
microscope, an average final spectrum were obtained as shown in 
Figure 1. Due to presence of hydrogen, high sulfur content and solid 
bitumen, background noise might also interfere with signals.4,5,38 
Table 2 shows the Raman shift of major bands in Raman spectrum for 
each sample quantitatively.

Figure 1 Representative spectra for all samples in this study after background fluorescence removal. D and G bands normally appear around 1350 cm-1 
and 1600 cm-1, respectively.
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In a separate study, we also acquired nanomechanical properties of 
the organic matter with PeakForce Tapping mode of AFM (mark of 
Bruker), Quantitative Nano-mechanical Mapping (QNM) to acquire 
the continuous map of elastic modulus of organic matter on each 
sample in-situ. PeakForce QNM can detect mechanical characteristics 
of each component separately at nanoscale without altering in-situ 
conditions which is a major achievement in quantifying mechanical 
properties of various types of materials. The details of this study are 
discussed by.7 Table 3 shows measured Young’s modulus, and Table 4 
is the mineralogical composition for two of the samples.

Table 2 Band position of Raman spectrum for each sample. As seen, bands 
position change due to structural changes

Well D (cm-1) G (cm-1) G-D (cm-1)

1 1367 1585 218

2 1367 1587 220

3 1361 1588.5 227.5

4 1351 1595 230

5 1357.5 1600.29 242.79

6 1354 1591 237

Table 3 Measured Young’s modulus for in-situ kerogens in this study

Well E (GPa)

1 2.5

2 4

3 4.1

4 4.2

5 10

6 5.02

Table 4 Percentage of each component based on visual kerogen assessment

Component Well 
3

Well 
5

Alginite 0.4 0.18

Solid Bitumen 2 3

( Table 4 continue...)

Bitumen Lamellae/Staining 3 0.32

Granular Bitumen 0.1 0.1

Bituminite 5 13

Granular Inertinite 3 0.1

Clays/Silt 55 50

Calcareous Matrix 5 5

Siliceous Matrix 20 25

Pyrite 6.5 3.3

Results and discussion
Systematic changes in band position, band separation, band full width 
at half maximum height for carbonaceous materials as a function 
of thermal maturity has been studied and well documented.4,5,21,39,40 
Shifts in position of major bands (shift in the D band towards lower 
wavelength and very slight shift in G band towards higher wavelength) 
are attributed to the increase of larger aromatic clusters and better 
ordered-structure kerogen.4,5,38,41 Figure 2(a) exhibits a correlation 
between band separations versus thermal maturity for samples in this 
study obtained by %VR and Tmax (from Rock-Eval Pyrolysis). It can 
be seen as both Tmax and %VR increases, G-D band separation also 
increases with a very good correlation, Figure 2.

Figure 3 shows maturity versus band separation for 12 different data 
sets including samples from this study. As seen, band separation 
variation, in addition to maturity can also detect the window and the 
type of hydrocarbon that organic matter can produce.

During maturation, the heteroatom-rich organic precursors lose 
many of their oxygenated and hydrogenated chemical groups43,44 
and the number of attachments separating from aromatic carbons 
increase.45 In Raman spectroscopy, the D band refers to a disorder 
in the atoms, which results from the Raman-active A1g symmetry 
associated with in-plane lattice defects and discontinuities of the sp2 
carbon network-like heteroatoms.4,5,37 Therefore, the D band from 
Raman spectroscopy can be used as a measure of the attachments 
that are separated from organic matter concurrently with hydrocarbon 
generation. This process is represented by the S1 parameter in Rock-
Eval. The correlation between S1 and D band is shown in Figure 4.

Figure 2 (a) Maturity vs. band separation; (b) Tmax vs. band separation.
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The origin of the G band in Raman spectroscopy as mentioned before 
is due to the in-plane E2g2 vibrational modes of the carbon atoms in 
aromatic ring structures.37,46,47 An abundance of aromatic structures 
means less potential to produce hydrocarbons. Thus, the S2 parameter 
from Rock-Eval can be correlated to the G band, Figure 5.

Studies have shown, in immature source rocks the organic matter 
appears to surround other minerals, becoming a load-bearing part 
of the rock framework.4,5,48,49 However, by increasing the maturity, 
kerogen becomes more isolated whereas the grains are more in contact 
with each other49,50 and records increase in its Young’s modulus. By 
comparing maturity level of the samples in this study with the Young’s 
modulus values from PeakForce AFM, a general increasing trend can 
be observed. Hence, considering the correlation between maturity and 
band separation (Figure 3), as well as maturity and Young’s modulus, 
a nonlinear correlation can be established between Young’s modulus 
and band separation as displayed in Figure 6. This nonlinear relation 
is also in accordance with nonlinear relation in Figure 3.4,5

The proposed method shows the high potential of Raman spectroscopy 
for acquiring organic matter properties from that reflects its molecular 
structure represented by Raman signals. Raman spectroscopy was 
able to detect both geochemical and mechanical alterations of organic 
matter in a very fast laboratory procedure, also helped us to avoid 

sample preparation steps that are required for %VRo and PeakForce 
AFM analysis. This can be a major cost and time saver to get accurate 
results. However, this method requires further investigations and 
elaboration with additional data that will be published in the future. 

Conclusion
In this study, samples were taken from six wells in the Bakken 
Formation, Williston Basin. Rock-Eval, vitrinite reflectance, Raman 
spectroscopy and PeakForce AFM measurements were performed 
on the samples. In the next step, potential of Raman spectroscopy in 
geochemical and geomechanical evaluation of organic matter was 
shown. Based on this study, following items can be concluded:

• Band separation of Raman major band signals can be used as 
maturity indicator.

• S1 from Rock-Eval was very well correlated with D band in 
Raman signal as an indicator of disorders in structure of organic 
matter molecule.

• S2 from Rock-Eval also were correlated with G band in Raman 
signal as indicator of aromaticity of organic matter molecule.

• Considering the correlations between maturity and band 

Figure 3 Using band separation for detecting maturity window and the 
type of hydrocarbon organic matter can produce. Data are from samples 
in this study, Spötl et al. (1998), Kelemen and Fang (2001) and Sauerer et 
al. (2017).

Figure 4 S1 vs. D band position from Raman spectroscopy.

Figure 5 S2 vs. G band position from Raman spectroscopy.

Figure 6 Young’s modulus of organic matter acquired from Peakforce AFM 
vs. band separation from Raman spectroscopy.
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separation, and also maturity and Young’s modulus led to us to 
establish a relationship between band separation and Young’s 
modulus of organic matter.
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