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Introduction
One in two people will be diagnosed with cancer in their lifetime.1 
Head and neck cancer is the sixth most common malignancy 
worldwide, with nearly 600,000 new cases and 300,000 deaths per 
year.2 Head and neck cancer includes cancers of the oral cavity, 
pharynx and larynx and 90% of these are squamous cell carcinomas of 
the head and neck (HNSCC).3 HNSCCs have a common origin in the 
squamous mucosa of the epithelial linings of the upper aerodigestive 
tract.4,5 Most patients express with locally advanced stage diseases (III 
to IVb) and tumour progression of locoregional failure and distant 
metastases is common.6,7 Due to this, the 5-year estimated survival 
rate is only 40-50%.5 Research development into the mechanisms 
employed by HNSCCs is essential to improve patient prognosis. 
Smoking tobacco and drinking alcohol, as well as maintaining poor 
oral hygiene, represent key lifestyle risk factors for development of 
malignancies in the head and neck area.8 Smoking and drinking are 
often done simultaneously and this exhibits a negative and synergistic 
effect on development risk.9 Inherited genetic disorders, such as 
Fanconi anaemia, can also predispose a patient to HNSCC,10 along 
with specific genetic mutations, most commonly TP53 inactivation.11 
Some viral infections are also associated HNSCC risk factors. Epstein-
Barr virus infection is a longstanding risk factor for nasopharyngeal 
carcinomas,12 and human papillomavirus (HPV) is strongly associated 
with both oropharyngeal squamous cell carcinoma4 and HNSCC 
carcinogenesis.13 Interestingly, survival rates for HPV-positive 
HNSCC patients are higher than those with HPV-negative tumours.14 
This may be due to tumour intrinsic factors, as genetic pathogenesis 
can increase drug sensitivity and decrease proliferation rates, or 
host intrinsic factors, as patients are likely to be healthier than those 
suffering from a drinking or smoking-induced disease.4,5 HPV-
negative HNSCC patient outcomes have seen little improvement in the 
last 30 years and this is partly due to a fundamental lack of knowledge 
in the molecular mechanisms of their pathogenesis.15 HNSCCs are 
regularly treated with aggressive multimodality therapy including 
surgery, chemotherapy, radiotherapy, recent CAR-T cell immune 
therapy and immune check point therapy or a concurrent combination 
of these.16 The chimeric immunoglobulin G monoclonal antibody 
cetuximab targets the epithelial growth factor receptor (EGFR) and 
is recommended as a chemotherapeutic agent for locally advanced 
HNSCC.17 However, cetuximab has a large side effect profile with over 
80% of patients suffering from skin reactions and is very expensive.17 
A large number of patients also experience a reduction in swallowing 

or speech function.18 Coupled with poor tumour responses, cetuximab 
has therefore only had limited anti-HNSCC therapy success.19 
Alternatively or as well as cetuximab, cisplatin is used in combination 
with fluorouracil to also combat HNSCC, but this has a predominantly 
palliative benefit.19 HPV-negative HNSCCs have a poorer response 
than HPV-positive HNSCCs to both chemotherapy and radiotherapy 
and have been reported as radiation-resistant.13 Due to the ineffective 
nature of current anti-HNSCC therapy, new research, especially in the 
less responsive HPV-negative disease, is essential for production of 
novel therapies. 

Macrophages are heterogeneous cell populations present in all living 
tissues that have an essential role in host innate immunity.20 They 
differentiate from circulating monocyte precursor cells21 and can be 
split into 2 types: M1 macrophages are pro-inflammatory and are 
‘classically’ activated M2 macrophages are anti-inflammatory and 
‘alternatively’ activated.20 These two macrophage types both have the 
potential to phagocytose pathogens but work in unison to balance pro 
and anti-inflammatory host responses.22 M1 macrophages are activated 
in an inflammatory environment to produce pro-inflammatory 
cytokines such as tumour necrosis factor-α (TNFα), whereas M2 
macrophages are activated to produce anti-inflammatory cytokines 
such as TGF-β1, IL-10 and are thus involved in wound healing and 
tissue repair.20 Phenotype switching between the two macrophage 
types can occur in order to better respond to a particular pathogen, 
and this is dependent on the presence of cytokines in the immediate 
environment and demonstrates the high plasticity of macrophages.20,23

Tumour cell survival is dependent on avoiding host immune detection, 
known as immune tolerance. One mechanism, by which immune 
tolerance is induced, is through tumour-macrophage bidirectional 
communication and thus formation of a microenvironment that 
favours tumour proliferation and immune system avoidance.18 
Tumour-associated macrophages (TAMs) are macrophage cells found 
in close proximity to tumour cells, and they have been shown to have 
pro-tumour effects.24 These are commonly M2 macrophages and aid 
cancer in evading the immune system by promoting angiogenesis 
within cancer cell masses and aiding the release of primary tumour 
cells for metastasis.25 The release of anti-inflammatory cytokines by 
TAMs initiates a vicious immunity cycle as the microenvironment 
becomes heavily anti-inflammatory. This can initiate M1 to M2 
phenotype switching in other surrounding macrophages, causing 
immunosuppression and further increasing anti-inflammatory 
cytokine production.
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The role of a disintegrin and metalloprotease (ADAM) 
and tumour necrosis factor α (TNFα)

A disintegrin and metalloproteases (ADAMs) are a family of proteases 
involved in the proteolysis of cell surface proteins.26 They are related 
to the matrix metalloproteinase family.27 Two specific ADAMs with 
very similar structures,28 ADAM10 and ADAM17, are recognised as 
important in the pathophysiology of HNSCC.29-31 ADAM17 is also 
known as TNFα-converting enzyme due to its ability to shed pro-
TNFα from the cell surface of molecules to release soluble TNFα.32 
ADAM10 has also been documented to shed pro-TNFα.33 Inhibition of 
ADAM10 and ADAM17 has been proposed as a potential therapeutic 
target for HNSCC30,31 due to cetuximab-resistant HNSCCs exhibiting 
higher ADAM10 and ADAM17 levels.31

hTNFα is a pro-inflammatory cytokine with the ability to induce 
apoptosis, necrosis or necroptosis in target cells. Apoptosis is induced 
via the activation of TNF receptor 1 and subsequent caspase-mediated 
signalling cascades.34 However, HNSCCs have largely developed 
resistance to the effects of hTNF.35 This may be due to upregulation 
of nuclear factor κB and thus increased expression of apoptosis-
inhibiting proteins.36 HNSCCs have also been shown to produce 
hTNFα and this has been suggested as beneficial towards tumour 
cell survival.37 Also, through stimulating the production of vascular 
endothelium growth factor, hTNFα promotes angiogenesis in the 
tumour cell microenvironment.8 hTNFα has been shown to exert both 
pro-tumour and anti-tumour effects. Further research into the role of 
hTNF in the tumour-macrophage interaction is needed to elucidate its 
role in tumour carcinogenesis and immune tolerance.

The role of interleukin-35

One method utilised by tumour cells for immune tolerance is the 
production of IL-35, an anti-inflammatory and immunosuppressive 
cytokine.38 However, the mechanism by which IL-35 does this is not 
yet fully understood. IL-35 is a cytokine of the IL-12 family and is 
composed in a heterodimer formation, meaning it is made up of two 
independent macromolecular protein subunits: Epstein-Barr virus-
induced gene 3 (Ebi3 which encodes IL-27) and interleukin-12 alpha 
(Il12a which encodes IL-12α/p35) (Figure 1).38,39 The IL-35 receptor 
(IL-35R) is made up of two corresponding subunits: glycoprotein 
130 and interleukin-12 receptor β2.39 These receptor subunits may 
be arranged either in homodimeric or heterodimeric forms, with 
the heterodimeric formation resulting in the strongest immune 
suppression on activation.40

Figure 1 The interleukin-35 (IL-35) heterodimer and corresponding IL-35 
receptor (IL-35R) homodimeric and heterodimeric formations. IL-35 binding 
to the heterodimeric IL-35R exhibits maximal suppression through activation 
of both single transducer and activator of transcription (STAT) 1 and 4. Ebi3, 
Epstein-Barr virus-induced gene 3 Il12a, interleukin-12α gp130, glycoprotein 
130 IL-12Rβ2, interleukin-12 receptor β2.

IL-35 isn’t exclusively produced by tumour cells. T regulatory (Treg) 
cells (CD4+ T cells in human and mouse) within the immune system 
of the body express IL-35 to maintain self-tolerance and prevent 
autoimmunity, as well as provide anti-inflammatory effects.38 This 
release of IL-35 is carefully regulated to prevent suppression of the 
natural immune response to pathogens. IL-35 expression has been 
demonstrated in many different cancer cell types,39,41and has even 
been suggested as a potential prognostic indicator for hepatocellular 
carcinoma.42 HNSCCs specifically have been shown to express IL-
35.43,44 These tumour cells hijack the immunosuppressive potential of 
IL-35 to avoid host immune detection and thus promote tumour cell 
survival.

IL-35 has been found to be a suppressor of both the immune and 
inflammatory system.39 It has been shown to suppress the activity of 
pro-inflammatory T helper (TH) cells 1 and 17, as well as causing the 
downregulation of pro-inflammatory cytokines such as IL-17.39,43,45 
Further, IL-35 promotes upregulation of anti-inflammatory cytokines, 
such as IL-10, and can expand Treg cells, thus promoting Treg-mediated 
suppression of the immune response.43,45 IL-35 can also convert 
cytotoxic T cells into Treg cells46 and induce alternative macrophage 
phenotype switching from M1 to the anti-inflammatory M2 form.47 
These events work synergistically to suppress the immune system. 

Contrastingly, in response to TNFα and interferon-δ stimulation, 
intrinsic IL-35 over-expression has been shown to inhibit cancer cell 
growth in vitro.39 This occurred through serum starvation-induced 
apoptosis via downregulation of cyclin D1 and survivin expression,39 
as cyclin D1 is factored in the G1/S cell cycle transition48 and survivin 
is an apoptosis suppressing protein.49 Further, hyper-expression 
of intrinsic IL-35 was shown in the same study to increase tumour 
apoptosis via both the extrinsic pathway, through upregulation of 
the Fas gene, and the intrinsic pathway, through downregulation of 
the B-cell lymphoma 2 (Bcl-2) gene.39 This demonstrates that both 
upregulating intrinsic IL-35 expression and downregulating extrinsic 
IL-35 expression are potential targets in the fight against cancer.

Long et al., 2016, linked IL-35 to anti-tumour activity in 
hepatocellular carcinoma, as lower IL-35 concentrations at the site 
of the tumour were recorded at more advanced stages of the disease.50 
They confirmed that over-expression of IL-35 in these cells may 
cause upregulation of HLA-ABC (human leukocyte antigen-ABC) 
and cluster of differentiation 95 (CD95).50 HLA-ABC is a gene 
complex that encodes MHC molecules,51 so upregulation makes the 
cancer more easily detected by the immune system.50 The contrasting 
results compared to previous literature may be due to the IL-35R 
having homodimeric or heterodimeric formations, with differing 
cell signalling cascades resulting in each case.50 This highlights the 
importance of the IL-35R as well as IL-35 itself in immune tolerance 
mechanisms.

The mechanisms through which IL-35 exerts its effects are still not 
fully understood. IL-35 has been shown to be immunosuppressive38 
as well as demonstrating anti-tumour activity.39,50 Tumour-derived IL-
35 poses a clinical problem to medicine as it enables tumour cells 
to develop immune tolerance. Greater understanding of the specific 
mechanisms by which IL-35 induces immune tolerance therefore has 
clinical relevance as novel therapeutic drug targets to treat tumours 
could be discovered.

The target cell lines

Heterogeneity within different HNSCCs, such as the disease 
anatomical site and drainage routes through veins and lymph nodes, 
results in different pharmacological therapy mechanisms with each 
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disease.4 Therefore, HNSCCs should not be considered as a single 
disease type and we thus investigated four HNSCC cell lines: FADU, 
H357, C1 and VB6. The HaCat and MG-63 cell lines were investigated 
as positive and negative controls respectively. FADU was isolated 
from a human hypopharyngeal squamous cell carcinoma52 and has 
been shown to express both IL-35 subunits.53 This epithelial cell line is 
HPV-negative54 and is characterised by overexpression of the EGFR.55 
H357, C1 and VB6 are HPV-negative56 progressive cell lines linked 
to one another, dependent on the presence of the αvβ6 integrin.57 This 
integrin has been highlighted as important in HNSCC.58 H357 is a 
polygonal cell line and was established from a human oral squamous 
cell carcinoma of the tongue.57,59 H357 is negative for the αv and β6 
integrin subunits.60 αv transfection of H357 produced the V3 cell 
line,61 which was infected with a retrovirus containing β6 cDNA to 
yield the αvβ6 positive VB6 cell line.58,60 C1 is a null transfectant 
control cell line of VB6, so is αv positive and β6 negative.58,60 H357, 
C1 and VB6 have all been shown to express both IL-35 subunits.53 
The MG-63 cell line was isolated from a human osteosarcoma and is 
fibroblastic.62 The HaCat cell line was established as an immortalised 
(>140 passages) form of human adult skin keratinocytes, and occurred 
through spontaneous transformation.63,64 HaCat cells are epithelial 
and differentiate normally, so are not tumourigenic.63 The THP-1 
monocyte cell line was isolated from human acute myeloid leukaemia 
and was used to represent human macrophages in vitro. 

The HNSCC cell lines C1, H357 and VB6, as well as the human 
keratinocyte cell line HaCat, induced significant hTNFα production 
by THP-1 cells in co-culture in vitro. The HNSCC cell line FADU 
and human osteosarcoma cell line MG-63 failed to induce hTNFα 
production. H357, VB6 and HaCat CM induced significant hTNFα 
production by THP-1 cells in co-culture, suggesting that soluble 
factors released by these cell lines are responsible for THP-1-mediated 
hTNFα production. THP-1 cells treated with IL-35 were subject to 
a significant reduction in hTNFα production when co-cultured with 
VB6. hTNFα is an integral cytokine in the tumour-macrophage 
relationship between HNSCC cell lines and the host immune system. 
The role of IL-35 in tumour immune tolerance and as a therapeutic 
drug target is an exciting future prospect for further research.
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