Journal of Oil, Gas and Petrochemical Sciences (JOGPS)

Open Access Journal

Frequency: Bi-Monthly

ISSN 2630-8541

Volume : 2 | Issue : 1

Research

Derivation of the nonlinear dynamics of the interface between a kick gas fluid and mud system in a gas wellbore based on momentum conservation principle

Mumuni Amadu1 and Adango Miadonye2

1Department of Process Engineering and Applied Science (PEAS), Dalhousie University, Halifax, Canada
2School of Science and Technology, Cape Breton University, Sydney, Canada

Received: September 11, 2018 | Published: January 01, 2019

Correspondence: Mumuni Amadu, Department of Process Engineering and Applied Science (PEAS), Dalhousie University, Halifax, Canada, Email mm846771@dal.ca

Citation: Amadu M, Miadonye A. Derivation of the nonlinear dynamics of the interface between a kick gas fluid and mud system in a gas wellbore based on momentum conservation principle. J Oil Gas Petrochem Sci. (2019);2(1):1-10. DOI: 10.30881/jogps.00018

Abstract

In this paper, the dynamics of the interface between a kick gas fluid and drill mud in the annular space of a drill hole has been considered using momentum balance approah. In so doing an existing momentum balance equation for mixture flow in conduits has been used to derive an interfacial velocity equation for aparticular scenario of kick event, where mud circulation ceases after kick detection. The model shows that the interface dynamics is non-linear. The utility of the derived equation stems from the fact that all parameters required for computation of velocities can be obtained. Based on the interfacial velocity model, the flux equation for annular mud flow and the maximum interfacial velocity at well head have been derived. The relevance of the velocity equation to casing design and running has also been dicussed. The approach in this work is purely analytical.

Keywords: momentum, velocity, kick, mud, expansion, interface acceleration

Introduction

Due to its strong bearing on the prospects of the oil and gas industry, notably from the point of view of drilling safety, drilling time and cost effective drilling operations, the kick problem has received a great deal of attention from the industry and academia.1–4 Consequently, modeling the kick phenomenon as a means of thoroughly understanding its occurrence and seeking mitigating strategies has been carried out.2,4–6

Regarding the modeling task, much work has been done in connection with annular pressure evolution during kick event and control.7–9 Also, gas migration velocity during a gas kick event has been given due attention.3 In the work of Nunes et al.,10 other notable contributions to our understanding of kick have been cited.2,11–14 It is the view of the present paper that while the annular pressure aspect of gas kick has received sufficient attention, not much has been done regarding the velocity or interfdacial dynamic aspects. This is because, in the work of Johnson and Cooper,3 the major attention was on the rate of gas migration in the annular space. While a thorough understanding of kick and its potential impact on the drilling industry is worth, knowledge of non-linear systems that are characterized by expansion motions of compressiblefluids as encountered in the nozzles of rockets engines gives a clue that the interface of a kick gas-mud system can equally be described non-linearly, due to increasing expansion of the gas phase in the annular space.15  Therefore, the objective of this paper is to consider the mathematical modeling of the interface dynamics. Specifically, the motion of the upper interface of a gas kick fluid in a wellbore during a kick event will be considered to derive both accelerationand velocity equations. The accomplishment of this task will augment the work of Johnson and Cooper,3 in addition to providing the impetus for related simulation works where the need arises.

Present Model

The first mathematical modelling of a gas kick was proposed in 1968. This model disregarded friction pressure loses in the annular space, slippage velocity between mud and gas as well as gas solubility in mud.16 In this paper, it isfirst assumed that the kick fluid enters the well bore due to underbalanced drilling conditions and expands as it moves through the annular column while annular circulation continues. Later, this assumption will be modified to suit the objective. Based on the assumption, the following hold true:

  1. The upper boundary of the gas kick fluid will accelerate as it moves through the annular space due to expansion.
  2. The velocity of the upper interface will be greater than that of annular mud circulating velocity and this will cause an increasing gas column.
  3. The upper interface of the system will experience a time varying acceleration.
  4. As the kick fluid moves through the annular space, bottom hole pressure will decrease due to decrease in annular mud column.
  5. Maximum bottom hole pressure will be experienced immediately the kick fluid enters the well bore and the least bottom whole pressure will be experienced when the kick fluid reaches well head.

There are different types of kick gas influxes into the annular space. One is where the influx occurs as a dispersion of bubbles in the annular space (See Figure 1). The second case involves influxes of discontinuous slugs of kick gas in the annular space. Third type occurs as a distinct slug with a sharp interface with annular drill mud (See Figure 2). The following assumptions will be made to simplify the modeling approach:

  1. The kick fluid enters the wellbore as a slug.
  2. A water base mud is assumed, meaning the solubility of gas is reasonably negligible.
  3. The density of the water base mud is assumed to be constant.
  4. Momentum conservation law holds for the motion of the drill mud above the upper interface of the gas kick fluid-water base mud system.
  5. Changes in mud density with distance is negligible and change in mud temperature with depth is also negligible. Thus:
    d ρ m dΖ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaeqyWdi3aaSbaaSqaaiaad2gaaeqaaaGcbaGaamizaGGaciab =z5aAbaacqGH9aqpcaaIWaaaaa@3E04@
  6. The interface between gas and mud is distinct and vertical to wellbore axis and changes in drill pipe outer diameter and hole size due to hole washout is negligible.17
  7. Phase transition due to vaporization is also negligible.17
<strong>Figure 1 </strong> Schematics of a kick gas influx as a mixture in annular drill mud.<sup>6</sup>

Figure 1 Schematics of a kick gas influx as a mixture in annular drill mud.6

<strong>Figure 2 </strong> Schematics of a kick gas influx as a slug.<sup>10</sup> = thickness of gas kick fluid.

Figure 2 Schematics of a kick gas influx as a slug.10 = thickness of gas kick fluid.

In attempting the mathematical model of the interfacial dynamics of a gas kick in this paper, the motivation stems from the fact that the motion of the system, gas kick fluid-mud obeys the fundamental laws of fluid dynamics, notably those of momentum and mass.18 Accordingly, the appropriate momentum conservation law will be invoked for achieving the objective. Consequently, modification of the momentum equation for flow in an annular space for the sake of the present work gives19:

P z =[ ϕ ρ 1 +( 1ϕ ) ρ 2 ]g± R e 2 d h [ ϕ ρ 1 V 1 2 +( 1ϕ ) ρ 2 V 2 2 ]+[ ϕ ρ 1 d V 1 dt +( 1ϕ ) ρ 2 d V 2 dt ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacqGHciITcaWGqbaabaGaeyOaIyRaamOEaaaacqGH9aqpdaWa daqaaiabew9aMjabeg8aYnaaBaaaleaacaaIXaaabeaakiabgUcaRm aabmaabaGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaaiabeg8a YnaaBaaaleaacaaIYaaabeaaaOGaay5waiaaw2faaiaadEgacqGHXc qSdaWcaaqaaiaadkfadaWgaaWcbaGaamyzaaqabaaakeaacaaIYaGa amizamaaBaaaleaacaWGObaabeaaaaGcdaWadaqaaiabew9aMjabeg 8aYnaaBaaaleaacaaIXaaabeaakiaadAfadaqhaaWcbaGaaGymaaqa aiaaikdaaaGccqGHRaWkdaqadaqaaiaaigdacqGHsislcqaHvpGzai aawIcacaGLPaaacqaHbpGCdaWgaaWcbaGaaGOmaaqabaGccaWGwbWa a0baaSqaaiaaikdaaeaacaaIYaaaaaGccaGLBbGaayzxaaGaey4kaS YaamWaaeaacqaHvpGzcqaHbpGCdaWgaaWcbaGaaGymaaqabaGcdaWc aaqaaiaadsgacaWGwbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamizai aadshaaaGaey4kaSYaaeWaaeaacaaIXaGaeyOeI0Iaeqy1dygacaGL OaGaayzkaaGaeqyWdi3aaSbaaSqaaiaaikdaaeqaaOWaaSaaaeaaca WGKbGaamOvamaaBaaaleaacaaIYaaabeaaaOqaaiaadsgacaWG0baa aaGaay5waiaaw2faaaaa@806E@ (1)

Where:

P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfaaaa@36C0@ = pressure in then flowing fluid

ρ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaaIXaaabeaaaaa@3892@ = density of component one

ρ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaaIYaaabeaaaaa@3893@ = density of component 2

ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMbaa@37B3@ = volume fraction of component 1

g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgaaaa@36D7@ = acceleration due to gravity

R e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaamyzaaqabaaaaa@37D8@ = Reynolds number for mixture flow

d h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa WcbaGaamiAaaqabaaaaa@37ED@ = hydraulic diameter of conduit

V 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaaGymaaqabaaaaa@37AD@ = velocity of phase 1

V 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaaGOmaaqabaaaaa@37AE@ = velocity of phase 2

z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQhaaaa@36EA@ = distance

t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshaaaa@36E4@ = time

If the kick gas enters the well bore as a slug, and exists distinctly from the drill mud, the flow of mud above the upper interface of the kick gas can be described by a modified form of Eq. (1) as:

P z =[ ϕ ρ 1 ]g± R e 2 d h [ ϕ ρ 1 V 1 2 ]+[ ϕ ρ 1 d V 1 dt ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTmaala aabaGaeyOaIyRaamiuaaqaaiabgkGi2kaadQhaaaGaeyypa0ZaamWa aeaacqaHvpGzcqaHbpGCdaWgaaWcbaGaaGymaaqabaaakiaawUfaca GLDbaacaWGNbGaeyySae7aaSaaaeaacaWGsbWaaSbaaSqaaiaadwga aeqaaaGcbaGaaGOmaiaadsgadaWgaaWcbaGaamiAaaqabaaaaOWaam WaaeaacqaHvpGzcqaHbpGCdaWgaaWcbaGaaGymaaqabaGccaWGwbWa a0baaSqaaiaaigdaaeaacaaIYaaaaaGccaGLBbGaayzxaaGaey4kaS YaamWaaeaacqaHvpGzcqaHbpGCdaWgaaWcbaGaaGymaaqabaGcdaWc aaqaaiaadsgacaWGwbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamizai aadshaaaaacaGLBbGaayzxaaaaaa@5F8A@ (2)

Here, = 1. Thus, for upward flow of drill mud the following equation holds:

P z = ρ m g+ R e 2 d h ρ m V m 2 ρ m d V m dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTmaala aabaGaeyOaIyRaamiuaaqaaiabgkGi2kaadQhaaaGaeyypa0JaeqyW di3aaSbaaSqaaiaad2gaaeqaaOGaam4zaiabgUcaRmaalaaabaGaam OuamaaBaaaleaacaWGLbaabeaaaOqaaiaaikdacaWGKbWaaSbaaSqa aiaadIgaaeqaaaaakiabeg8aYnaaBaaaleaacaWGTbaabeaakiaadA fadaqhaaWcbaGaamyBaaqaaiaaikdaaaGccqGHsislcqaHbpGCdaWg aaWcbaGaamyBaaqabaGcdaWcaaqaaiaadsgacaWGwbWaaSbaaSqaai aad2gaaeqaaaGcbaGaamizaiaadshaaaaaaa@546E@ (3)

V m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaamyBaaqabaaaaa@37E4@ = mud velocity       

ρ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaWGTbaabeaaaaa@38C9@ = mud density

The distance travelled by the upper interface of the kick fluid-drill mud system per unit time, which is the velocity (V1), for flow in the upward direction is:

dZ( t ) dt = V 1 d 2 Z( t ) d t 2 = dV dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaWGKbGaamOwamaabmaabaGaamiDaaGaayjkaiaawMcaaaqaaiaa dsgacaWG0baaaiabg2da9iaadAfadaWgaaWcbaGaaGymaaqabaaake aaaeaadaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWGAbWa aeWaaeaacaWG0baacaGLOaGaayzkaaaabaGaamizaiaadshadaahaa WcbeqaaiaaikdaaaaaaOGaeyypa0ZaaSaaaeaacaWGKbGaamOvaaqa aiaadsgacaWG0baaaaaaaa@4BDF@ (4)

In which Z( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaqada qaaiaadshaaiaawIcacaGLPaaaaaa@394C@ is the distance travelled upward at a given time, t. Hence:

P z = ρ m g+ R e 2 d h ρ m ( dZ( t ) dt ) 2 + ρ m d 2 Z( t ) d t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTmaala aabaGaeyOaIyRaamiuaaqaaiabgkGi2kaadQhaaaGaeyypa0JaeqyW di3aaSbaaSqaaiaad2gaaeqaaOGaam4zaiabgUcaRmaalaaabaGaam OuamaaBaaaleaacaWGLbaabeaaaOqaaiaaikdacaWGKbWaaSbaaSqa aiaadIgaaeqaaaaakiabeg8aYnaaBaaaleaacaWGTbaabeaakmaabm aabaWaaSaaaeaacaWGKbGaamOwamaabmaabaGaamiDaaGaayjkaiaa wMcaaaqaaiaadsgacaWG0baaaaGaayjkaiaawMcaamaaCaaaleqaba GaaGOmaaaakiabgUcaRiabeg8aYnaaBaaaleaacaWGTbaabeaakmaa laaabaGaamizamaaCaaaleqabaGaaGOmaaaakiaadQfadaqadaqaai aadshaaiaawIcacaGLPaaaaeaacaWGKbGaamiDamaaCaaaleqabaGa aGOmaaaaaaaaaa@5D95@ (5)

Equation (5) can be written in integral form as:

P sur P( Z ) dP = Z( t ) D ρ m gdZ+ Z( t ) D R e 2 d h ρ m ( dZ( t ) dt ) 2 dZ Z( t ) D ρ m d 2 Z( t ) d t 2 dZ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTmaape dabaGaamizaiaadcfaaSqaaiaadcfadaWgaaadbaGaam4Caiaadwha caWGYbaabeaaaSqaaiaadcfadaqadaqaaiaadQfaaiaawIcacaGLPa aaa0Gaey4kIipakiabg2da9maapedabaGaeqyWdi3aaSbaaSqaaiaa d2gaaeqaaaqaaiaadQfadaqadaqaaiaadshaaiaawIcacaGLPaaaae aacaWGebaaniabgUIiYdGccaWGNbGaamizaiaadQfacqGHRaWkdaWd XaqaamaalaaabaGaamOuamaaBaaaleaacaWGLbaabeaaaOqaaiaaik dacaWGKbWaaSbaaSqaaiaadIgaaeqaaaaaaeaacaWGAbWaaeWaaeaa caWG0baacaGLOaGaayzkaaaabaGaamiraaqdcqGHRiI8aOGaeqyWdi 3aaSbaaSqaaiaad2gaaeqaaOWaaeWaaeaadaWcaaqaaiaadsgacaWG AbWaaeWaaeaacaWG0baacaGLOaGaayzkaaaabaGaamizaiaadshaaa aacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaamizaiaadQfa cqGHsisldaWdXaqaaiabeg8aYnaaBaaaleaacaWGTbaabeaaaeaaca WGAbWaaeWaaeaacaWG0baacaGLOaGaayzkaaaabaGaamiraaqdcqGH RiI8aOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamOwam aabmaabaGaamiDaaGaayjkaiaawMcaaaqaaiaadsgacaWG0bWaaWba aSqabeaacaaIYaaaaaaakiaadsgacaWGAbaaaa@7C4E@ (6)

Hence:

P( Z( t ) ) P sur = ρ m g( DZ( t ) )+ R e 2 d h ρ m ( dZ( t ) dt ) 2 ( DZ( t ) ) ρ m d 2 Z( t ) d t 2 ( DZ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaqada qaaiaadQfadaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGL PaaacqGHsislcaWGqbWaaSbaaSqaaiaadohacaWG1bGaamOCaaqaba GccqGH9aqpcqaHbpGCdaWgaaWcbaGaamyBaaqabaGccaWGNbWaaeWa aeaacaWGebGaeyOeI0IaamOwamaabmaabaGaamiDaaGaayjkaiaawM caaaGaayjkaiaawMcaaiabgUcaRmaalaaabaGaamOuamaaBaaaleaa caWGLbaabeaaaOqaaiaaikdacaWGKbWaaSbaaSqaaiaadIgaaeqaaa aakiabeg8aYnaaBaaaleaacaWGTbaabeaakmaabmaabaWaaSaaaeaa caWGKbGaamOwamaabmaabaGaamiDaaGaayjkaiaawMcaaaqaaiaads gacaWG0baaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakmaa bmaabaGaamiraiabgkHiTiaadQfadaqadaqaaiaadshaaiaawIcaca GLPaaaaiaawIcacaGLPaaacqGHsislcqaHbpGCdaWgaaWcbaGaamyB aaqabaGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWGAb WaaeWaaeaacaWG0baacaGLOaGaayzkaaaabaGaamizaiaadshadaah aaWcbeqaaiaaikdaaaaaaOWaaeWaaeaacaWGebGaeyOeI0IaamOwam aabmaabaGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@768D@ (7)

Where:

P( Z( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaqada qaaiaadQfadaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGL Paaaaaa@3BAA@ = is the pressure in drill mud above the upper interface of drill mud at a given distance, which is a function of time.

Pressure balance

Considering Figure 3, it is assume that the initial column of the kick fluid is Z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaWgaa WcbaGaaGimaaqabaaaaa@37B0@ , and that annular mud velocity is V an MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaamyyaiaad6gaaeqaaaaa@38CB@ .

<strong>Figure 3 </strong> Schematics of a gas kick influx in a well bore.

Figure 3 Schematics of a gas kick influx in a well bore.

The initial bottom hole pressure at the time of the kick event is given as:

( D Z 0 ) ρ m g+ P suf = P ib MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iraiabgkHiTiaadQfadaWgaaWcbaGaaGimaaqabaaakiaawIcacaGL PaaacqaHbpGCdaWgaaWcbaGaamyBaaqabaGccaWGNbGaey4kaSIaam iuamaaBaaaleaacaWGZbGaamyDaiaadAgaaeqaaOGaeyypa0Jaamiu amaaBaaaleaacaWGPbGaamOyaaqabaaaaa@4773@ (8)

Where:

D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseaaaa@36B4@ = depth of well at the time of the kick event

Z o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaWgaa WcbaGaam4Baaqabaaaaa@37EA@ = initial column thickness of kick fluid

P ib MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaamyAaiaadkgaaeqaaaaa@38C1@ = initial bottom hole pressure

P suf MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaam4CaiaadwhacaWGMbaabeaaaaa@39C9@ = surface pressure

If the pressure at the upper interface at a given time, t, is the same as that averaged over the column of kick fluid, the application of the state equation for the gas kick gives:

P(Z)[ Z V an t ] A n / T z Z Z =[ P sur +( D Z 0 ) ρ m g ] Z 0 A an / T Z 0 Z Z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaGGOa GaamOwaiaacMcadaWadaqaaiaadQfacqGHsislcaWGwbWaaSbaaSqa aiaadggacaWGUbaabeaakiaadshaaiaawUfacaGLDbaacaWGbbWaaS baaSqaaiaad6gaaeqaaOGaai4laiaadsfadaWgaaWcbaGaamOEaaqa baGccaWGAbWaaSbaaSqaaiaadQfaaeqaaOGaeyypa0ZaamWaaeaaca WGqbWaaSbaaSqaaiaadohacaWG1bGaamOCaaqabaGccqGHRaWkdaqa daqaaiaadseacqGHsislcaWGAbWaaSbaaSqaaiaaicdaaeqaaaGcca GLOaGaayzkaaGaeqyWdi3aaSbaaSqaaiaad2gaaeqaaOGaam4zaaGa ay5waiaaw2faaiaadQfadaWgaaWcbaGaaGimaaqabaGccaWGbbWaaS baaSqaaiaadggacaWGUbaabeaakiaac+cacaWGubWaaSbaaSqaaiaa dQfadaWgaaadbaGaaGimaaqabaaaleqaaOGaamOwamaaBaaaleaaca WGAbWaaSbaaWqaaiaaicdaaeqaaaWcbeaaaaa@6300@ (9)

Where:

T Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamOwaaqabaaaaa@37CF@ = temperature at annular position Z

Z Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaWgaa WcbaGaamOwaaqabaaaaa@37D5@ = gas compressibility factor at annular position Z

T Z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamOwamaaBaaameaacaaIWaaabeaaaSqabaaaaa@38C1@ = temperature at annular position

Z Z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaWgaa WcbaGaamOwamaaBaaameaacaaIWaaabeaaaSqabaaaaa@38C7@ = gas compressibility factor at annular position Z

Solution for pressure at a given distance using Eq. (9) gives:

P(Z)=β[ P sur +( D Z 0 ) ρ m g ] Z 0 /[ Z( t ) V an t ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaGGOa GaamOwaiaacMcacqGH9aqpcqaHYoGydaWadaqaaiaadcfadaWgaaWc baGaam4CaiaadwhacaWGYbaabeaakiabgUcaRmaabmaabaGaamirai abgkHiTiaadQfadaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaa cqaHbpGCdaWgaaWcbaGaamyBaaqabaGccaWGNbaacaGLBbGaayzxaa GaamOwamaaBaaaleaacaaIWaaabeaakiaac+cadaWadaqaaiaadQfa daqadaqaaiaadshaaiaawIcacaGLPaaacqGHsislcaWGwbWaaSbaaS qaaiaadggacaWGUbaabeaakiaadshaaiaawUfacaGLDbaaaaa@57EE@ (10a)

Where:

β= T Z Z Z T Z 0 Z Z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIjabg2 da9maalaaabaGaamivamaaBaaaleaacaWGAbaabeaakiaadQfadaWg aaWcbaGaamOwaaqabaaakeaacaWGubWaaSbaaSqaaiaadQfadaWgaa adbaGaaGimaaqabaaaleqaaOGaamOwamaaBaaaleaacaWGAbWaaSba aWqaaiaaicdaaeqaaaWcbeaaaaaaaa@4240@ (10b)

Substituting into Eq. (7) gives:

β [ P sur +( D Z 0 ) ρ m g ] Z 0 ( Z( t ) V an t ) P sur = ρ m g( DZ( t ) )+ R e 2 d h ρ m ( dZ( t ) dt ) 2 ( DZ( t ) ) + ρ m d 2 Z( t ) d t 2 ( DZ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqOSdi 2aaSaaaeaadaWadaqaaiaadcfadaWgaaWcbaGaam4CaiaadwhacaWG YbaabeaakiabgUcaRmaabmaabaGaamiraiabgkHiTiaadQfadaWgaa WcbaGaaGimaaqabaaakiaawIcacaGLPaaacqaHbpGCdaWgaaWcbaGa amyBaaqabaGccaWGNbaacaGLBbGaayzxaaGaamOwamaaBaaaleaaca aIWaaabeaaaOqaamaabmaabaGaamOwamaabmaabaGaamiDaaGaayjk aiaawMcaaiabgkHiTiaadAfadaWgaaWcbaGaamyyaiaad6gaaeqaaO GaamiDaaGaayjkaiaawMcaaaaacqGHsislcaWGqbWaaSbaaSqaaiaa dohacaWG1bGaamOCaaqabaGccqGH9aqpcqaHbpGCdaWgaaWcbaGaam yBaaqabaGccaWGNbWaaeWaaeaacaWGebGaeyOeI0IaamOwamaabmaa baGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgUcaRmaala aabaGaamOuamaaBaaaleaacaWGLbaabeaaaOqaaiaaikdacaWGKbWa aSbaaSqaaiaadIgaaeqaaaaakiabeg8aYnaaBaaaleaacaWGTbaabe aakmaabmaabaWaaSaaaeaacaWGKbGaamOwamaabmaabaGaamiDaaGa ayjkaiaawMcaaaqaaiaadsgacaWG0baaaaGaayjkaiaawMcaamaaCa aaleqabaGaaGOmaaaakmaabmaabaGaamiraiabgkHiTiaadQfadaqa daqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaaaeaacq GHRaWkcqaHbpGCdaWgaaWcbaGaamyBaaqabaGcdaWcaaqaaiaadsga daahaaWcbeqaaiaaikdaaaGccaWGAbWaaeWaaeaacaWG0baacaGLOa GaayzkaaaabaGaamizaiaadshadaahaaWcbeqaaiaaikdaaaaaaOWa aeWaaeaacaWGebGaeyOeI0IaamOwamaabmaabaGaamiDaaGaayjkai aawMcaaaGaayjkaiaawMcaaaaaaa@8DAF@ (11)

Thus:

β [ P sur +( D Z 0 ) ρ m g ] Z 0 ( Z( t ) V an t )( DZ( t ) ) P sur ( DZ( t ) ) ρ m g= R e 2 d h ρ m ( dZ( t ) dt ) 2 + ρ m d 2 Z( t ) d t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaala aabaWaamWaaeaacaWGqbWaaSbaaSqaaiaadohacaWG1bGaamOCaaqa baGccqGHRaWkdaqadaqaaiaadseacqGHsislcaWGAbWaaSbaaSqaai aaicdaaeqaaaGccaGLOaGaayzkaaGaeqyWdi3aaSbaaSqaaiaad2ga aeqaaOGaam4zaaGaay5waiaaw2faaiaadQfadaWgaaWcbaGaaGimaa qabaaakeaadaqadaqaaiaadQfadaqadaqaaiaadshaaiaawIcacaGL PaaacqGHsislcaWGwbWaaSbaaSqaaiaadggacaWGUbaabeaakiaads haaiaawIcacaGLPaaadaqadaqaaiaadseacqGHsislcaWGAbWaaeWa aeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaaaaiabgkHiTm aalaaabaGaamiuamaaBaaaleaacaWGZbGaamyDaiaadkhaaeqaaaGc baWaaeWaaeaacaWGebGaeyOeI0IaamOwamaabmaabaGaamiDaaGaay jkaiaawMcaaaGaayjkaiaawMcaaaaacqGHsislcqaHbpGCdaWgaaWc baGaamyBaaqabaGccaWGNbGaeyypa0ZaaSaaaeaacaWGsbWaaSbaaS qaaiaadwgaaeqaaaGcbaGaaGOmaiaadsgadaWgaaWcbaGaamiAaaqa baaaaOGaeqyWdi3aaSbaaSqaaiaad2gaaeqaaOWaaeWaaeaadaWcaa qaaiaadsgacaWGAbWaaeWaaeaacaWG0baacaGLOaGaayzkaaaabaGa amizaiaadshaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaeqyWdi3aaSbaaSqaaiaad2gaaeqaaOWaaSaaaeaacaWG KbWaaWbaaSqabeaacaaIYaaaaOGaamOwamaabmaabaGaamiDaaGaay jkaiaawMcaaaqaaiaadsgacaWG0bWaaWbaaSqabeaacaaIYaaaaaaa aaa@8718@ (12)

Equation 13 is a second order ordinary differential equation of second degree and it is nonlinear in character. The solution for velocity,, can be obtained using the derivative substitution method.20 In this regard, the following substitution will be made:

dZ( t ) dt =P d 2 Z( t ) d t 2 = dP dt = 1 2 d( P 2 ) dZ( t ) dZ( t ) dt = 1 2 d( P 2 ) dZ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaWGKbGaamOwamaabmaabaGaamiDaaGaayjkaiaawMcaaaqaaiaa dsgacaWG0baaaiabg2da9iaadcfaaeaaaeaadaWcaaqaaiaadsgada ahaaWcbeqaaiaaikdaaaGccaWGAbWaaeWaaeaacaWG0baacaGLOaGa ayzkaaaabaGaamizaiaadshadaahaaWcbeqaaiaaikdaaaaaaOGaey ypa0ZaaSaaaeaacaWGKbGaamiuaaqaaiaadsgacaWG0baaaiabg2da 9maalaaabaGaaGymaaqaaiaaikdaaaWaaSaaaeaacaWGKbWaaeWaae aacaWGqbWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaabaGa amizaiaadQfadaqadaqaaiaadshaaiaawIcacaGLPaaaaaWaaSaaae aacaWGKbGaamOwamaabmaabaGaamiDaaGaayjkaiaawMcaaaqaaiaa dsgacaWG0baaaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaS aaaeaacaWGKbWaaeWaaeaacaWGqbWaaWbaaSqabeaacaaIYaaaaaGc caGLOaGaayzkaaaabaGaamizaiaadQfadaqadaqaaiaadshaaiaawI cacaGLPaaaaaaaaaa@6760@ (13)

Substituting and dividing through by density gives:

2β [ P sur +( D Z 0 ) ρ m g ] Z 0 ρ m ( Z( t ) V an t )( DZ( t ) ) 2 P sur ρ m ( DZ( t ) ) 2g= R e d h P 2 + d( P 2 ) dZ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaikdacqaHYo GydaWcaaqaamaadmaabaGaamiuamaaBaaaleaacaWGZbGaamyDaiaa dkhaaeqaaOGaey4kaSYaaeWaaeaacaWGebGaeyOeI0IaamOwamaaBa aaleaacaaIWaaabeaaaOGaayjkaiaawMcaaiabeg8aYnaaBaaaleaa caWGTbaabeaakiaadEgaaiaawUfacaGLDbaacaWGAbWaaSbaaSqaai aaicdaaeqaaaGcbaGaeqyWdi3aaSbaaSqaaiaad2gaaeqaaOWaaeWa aeaacaWGAbWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOeI0Iaam OvamaaBaaaleaacaWGHbGaamOBaaqabaGccaWG0baacaGLOaGaayzk aaWaaeWaaeaacaWGebGaeyOeI0IaamOwamaabmaabaGaamiDaaGaay jkaiaawMcaaaGaayjkaiaawMcaaaaacqGHsisldaWcaaqaaiaaikda caWGqbWaaSbaaSqaaiaadohacaWG1bGaamOCaaqabaaakeaacqaHbp GCdaWgaaWcbaGaamyBaaqabaGcdaqadaqaaiaadseacqGHsislcaWG AbWaaeWaaeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaaaai abgkHiTiaaikdacaWGNbGaeyypa0ZaaSaaaeaacaWGsbWaaSbaaSqa aiaadwgaaeqaaaGcbaGaamizamaaBaaaleaacaWGObaabeaaaaGcca WGqbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaWGKbWa aeWaaeaacaWGqbWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaa aabaGaamizaiaadQfadaqadaqaaiaadshaaiaawIcacaGLPaaaaaaa aa@7F34@ (14)

The equation is now a first order linear homogenous ordinary differential equation.

The integration factor is:

I= e R e d h dZ = e R e d h Z( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeacqGH9a qpcaWGLbWaaWbaaSqabeaadaWdXaqaamaalaaabaGaamOuamaaBaaa meaacaWGLbaabeaaaSqaaiaadsgadaWgaaadbaGaamiAaaqabaaaaS GaamizaiaadQfaaWqaaaqaaaGdcqGHRiI8aaaakiabg2da9iaadwga daahaaWcbeqaamaalaaabaGaamOuamaaBaaameaacaWGLbaabeaaaS qaaiaadsgadaWgaaadbaGaamiAaaqabaaaaSGaamOwamaabmaabaGa amiDaaGaayjkaiaawMcaaaaaaaa@4A7F@ (15)

Multiplying through by this factor gives:

2β [ P sur +( D Z 0 ) ρ m g ] Z 0 ρ m ( Z( t ) V an t )( DZ( t ) ) e R e d h Z(t) 2 P sur ρ m ( DZ( t ) ) e R e d h Z(t) 2g e R e d h Z(t) = R e d h e R e d Z(t) P 2 + e R e d h Z(t) d( P 2 ) dZ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaGOmai abek7aInaalaaabaWaamWaaeaacaWGqbWaaSbaaSqaaiaadohacaWG 1bGaamOCaaqabaGccqGHRaWkdaqadaqaaiaadseacqGHsislcaWGAb WaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaGaeqyWdi3aaSba aSqaaiaad2gaaeqaaOGaam4zaaGaay5waiaaw2faaiaadQfadaWgaa WcbaGaaGimaaqabaaakeaacqaHbpGCdaWgaaWcbaGaamyBaaqabaGc daqadaqaaiaadQfadaqadaqaaiaadshaaiaawIcacaGLPaaacqGHsi slcaWGwbWaaSbaaSqaaiaadggacaWGUbaabeaakiaadshaaiaawIca caGLPaaadaqadaqaaiaadseacqGHsislcaWGAbWaaeWaaeaacaWG0b aacaGLOaGaayzkaaaacaGLOaGaayzkaaaaaiaadwgadaahaaWcbeqa aiabgkHiTmaalaaabaGaamOuamaaBaaameaacaWGLbaabeaaaSqaai aadsgadaWgaaadbaGaamiAaaqabaaaaSGaamOwaiaacIcacaWG0bGa aiykaaaakiabgkHiTmaalaaabaGaaGOmaiaadcfadaWgaaWcbaGaam 4CaiaadwhacaWGYbaabeaaaOqaaiabeg8aYnaaBaaaleaacaWGTbaa beaakmaabmaabaGaamiraiabgkHiTiaadQfadaqadaqaaiaadshaai aawIcacaGLPaaaaiaawIcacaGLPaaaaaGaamyzamaaCaaaleqabaGa eyOeI0YaaSaaaeaacaWGsbWaaSbaaWqaaiaadwgaaeqaaaWcbaGaam izamaaBaaameaacaWGObaabeaaaaWccaWGAbGaaiikaiaadshacaGG PaaaaOGaeyOeI0IaaGOmaiaadEgacaWGLbWaaWbaaSqabeaacqGHsi sldaWcaaqaaiaadkfadaWgaaadbaGaamyzaaqabaaaleaacaWGKbWa aSbaaWqaaiaadIgaaeqaaaaaliaadQfacaGGOaGaamiDaiaacMcaaa GccqGH9aqpdaWcaaqaaiaadkfadaWgaaWcbaGaamyzaaqabaaakeaa caWGKbWaaSbaaSqaaiaadIgaaeqaaaaakiaadwgadaahaaWcbeqaai abgkHiTmaalaaabaGaamOuamaaBaaameaacaWGLbaabeaaaSqaaiaa dsgaaaGaamOwaiaacIcacaWG0bGaaiykaaaakiaadcfadaahaaWcbe qaaiaaikdaaaaakeaaaeaacqGHRaWkcaWGLbWaaWbaaSqabeaacqGH sisldaWcaaqaaiaadkfadaWgaaadbaGaamyzaaqabaaaleaacaWGKb WaaSbaaWqaaiaadIgaaeqaaaaaliaadQfacaGGOaGaamiDaiaacMca aaGcdaWcaaqaaiaadsgadaqadaqaaiaadcfadaahaaWcbeqaaiaaik daaaaakiaawIcacaGLPaaaaeaacaWGKbGaamOwamaabmaabaGaamiD aaGaayjkaiaawMcaaaaaaaaa@ACC5@ (16)

The following parameters will be defined:

R e d h =ξ 2β [ P sur +( D Z 0 ) ρ m g ] Z 0 ρ m =ζ 2 P sur ρ m =λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaWGsbWaaSbaaSqaaiaadwgaaeqaaaGcbaGaamizamaaBaaaleaa caWGObaabeaaaaGccqGH9aqpcqaH+oaEaeaaaeaacaaIYaGaeqOSdi 2aaSaaaeaadaWadaqaaiaadcfadaWgaaWcbaGaam4CaiaadwhacaWG YbaabeaakiabgUcaRmaabmaabaGaamiraiabgkHiTiaadQfadaWgaa WcbaGaaGimaaqabaaakiaawIcacaGLPaaacqaHbpGCdaWgaaWcbaGa amyBaaqabaGccaWGNbaacaGLBbGaayzxaaGaamOwamaaBaaaleaaca aIWaaabeaaaOqaaiabeg8aYnaaBaaaleaacaWGTbaabeaaaaGccqGH 9aqpcqaH2oGEaeaaaeaacaaIYaWaaSaaaeaacaWGqbWaaSbaaSqaai aadohacaWG1bGaamOCaaqabaaakeaacqaHbpGCdaWgaaWcbaGaamyB aaqabaaaaOGaeyypa0Jaeq4UdWgaaaa@60C4@ (17)

Substituting into Eq. (16) gives:

ζ ( Z( t ) V an t )( DZ( t ) ) e ξZ(t) λ ( DZ( t ) ) e ξZ(t) 2g e ξZ(t) =ξ e ξZ(t) P 2 + e ξZ(t) d( P 2 ) dZ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacqaH2oGEaeaadaqadaqaaiaadQfadaqadaqaaiaadshaaiaawIca caGLPaaacqGHsislcaWGwbWaaSbaaSqaaiaadggacaWGUbaabeaaki aadshaaiaawIcacaGLPaaadaqadaqaaiaadseacqGHsislcaWGAbWa aeWaaeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaaaaiaadw gadaahaaWcbeqaaiabgkHiTiabe67a4jaadQfacaGGOaGaamiDaiaa cMcaaaGccqGHsisldaWcaaqaaiabeU7aSbqaamaabmaabaGaamirai abgkHiTiaadQfadaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIca caGLPaaaaaGaamyzamaaCaaaleqabaGaeyOeI0IaeqOVdGNaamOwai aacIcacaWG0bGaaiykaaaakiabgkHiTiaaikdacaWGNbGaamyzamaa CaaaleqabaGaeyOeI0IaeqOVdGNaamOwaiaacIcacaWG0bGaaiykaa aakiabg2da9iabe67a4jaadwgadaahaaWcbeqaaiabgkHiTiabe67a 4jaadQfacaGGOaGaamiDaiaacMcaaaGccaWGqbWaaWbaaSqabeaaca aIYaaaaaGcbaaabaGaey4kaSIaamyzamaaCaaaleqabaGaeyOeI0Ia eqOVdGNaamOwaiaacIcacaWG0bGaaiykaaaakmaalaaabaGaamizam aabmaabaGaamiuamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMca aaqaaiaadsgacaWGAbWaaeWaaeaacaWG0baacaGLOaGaayzkaaaaaa aaaa@8511@ (18)

Equation (18) can be written as:

d dZ( t ) ( e ξZ P 2 )= ζ ( Z( t ) V an t )( DZ( t ) ) e ξZ λ ( DZ( t ) ) e ξZ 2g e ξZ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaaqaaiaadsgacaWGAbWaaeWaaeaacaWG0baacaGLOaGaayzkaaaa amaabmaabaGaamyzamaaCaaaleqabaGaeqOVdGNaamOwaaaakiaadc fadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGH9aqpdaWc aaqaaiabeA7a6bqaamaabmaabaGaamOwamaabmaabaGaamiDaaGaay jkaiaawMcaaiabgkHiTiaadAfadaWgaaWcbaGaamyyaiaad6gaaeqa aOGaamiDaaGaayjkaiaawMcaamaabmaabaGaamiraiabgkHiTiaadQ fadaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaGa amyzamaaCaaaleqabaGaeqOVdGNaamOwaaaakiabgkHiTmaalaaaba Gaeq4UdWgabaWaaeWaaeaacaWGebGaeyOeI0IaamOwamaabmaabaGa amiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaacaWGLbWaaWbaaS qabeaacqaH+oaEcaWGAbaaaOGaeyOeI0IaaGOmaiaadEgacaWGLbWa aWbaaSqabeaacqaH+oaEcaWGAbGaaiikaiaadshacaGGPaaaaaaa@6EE6@ (19)

Equation (19) can be solved for two distinct scenarios in drilling, where a gas kick is encountered at a given depth. One is the case where mud circulation is quickly stopped following pit gain. In this case, the annular mud velocity in Eq. (19) becomes zero. The former scenario will be the focus of this paper, assuming the surface pressure,, is atmospheric.

Solution for the case with aero mud velocity

In drilling practice, the following are recommended when a kick is taken21:

  1. Shut in the well
  2. Apply back pressure through the choke while continuing

The essence of the above steps is to detect continuous pit gain through annular mud flow, which is the criterion for confirming the existence of a kick. Hence, Eq. (19), which is the result of the derivative substitution method can be solved for the square of mud velocity after shut-in, which is indicative of the flow of a kick fluid in the well bore following the initial influx. Figure 4 shows the schematics of this scenario.

<strong>Figure 4 </strong> schematics of a gas kick with no annular circulation.

Figure 4 schematics of a gas kick with no annular circulation.

Thus:

d dZ( t ) ( e ξZ P 2 )= ζ Z(t)( DZ( t ) ) e ξZ λ ( DZ( t ) ) e ξZ 2g e ξZ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaaqaaiaadsgacaWGAbWaaeWaaeaacaWG0baacaGLOaGaayzkaaaa amaabmaabaGaamyzamaaCaaaleqabaGaeqOVdGNaamOwaaaakiaadc fadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGH9aqpdaWc aaqaaiabeA7a6bqaaiaadQfacaGGOaGaamiDaiaacMcadaqadaqaai aadseacqGHsislcaWGAbWaaeWaaeaacaWG0baacaGLOaGaayzkaaaa caGLOaGaayzkaaaaaiaadwgadaahaaWcbeqaaiabe67a4jaadQfaaa GccqGHsisldaWcaaqaaiabeU7aSbqaamaabmaabaGaamiraiabgkHi TiaadQfadaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPa aaaaGaamyzamaaCaaaleqabaGaeqOVdGNaamOwaaaakiabgkHiTiaa ikdacaWGNbGaamyzamaaCaaaleqabaGaeqOVdGNaamOwaaaaaaa@660B@ (20)

Integration gives:

P 2 = ζ D ln( Z DZ )+λln(DZ) 2g ξ +C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaahaa WcbeqaaiaaikdaaaGccqGH9aqpdaWcaaqaaiabeA7a6bqaaiaadsea aaGaciiBaiaac6gadaqadaqaamaalaaabaGaamOwaaqaaiaadseacq GHsislcaWGAbaaaaGaayjkaiaawMcaaiabgUcaRiabeU7aSjGacYga caGGUbGaaiikaiaadseacqGHsislcaWGAbGaaiykaiabgkHiTmaala aabaGaaGOmaiaadEgaaeaacqaH+oaEaaGaey4kaSIaam4qaaaa@50BA@ (21)

Substitution of P from Eq. (13) gives:

( dZ(t) dt ) 2 = V int 2 = ζ D ln( Z DZ )+λln(DZ) 2g ξ +C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaWaaS aaaeaacaWGKbGaamOwaiaacIcacaWG0bGaaiykaaqaaiaadsgacaWG 0baaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabg2da9i aadAfadaqhaaWcbaGaciyAaiaac6gacaGG0baabaGaaGOmaaaakiab g2da9maalaaabaGaeqOTdOhabaGaamiraaaaciGGSbGaaiOBamaabm aabaWaaSaaaeaacaWGAbaabaGaamiraiabgkHiTiaadQfaaaaacaGL OaGaayzkaaGaey4kaSIaeq4UdWMaciiBaiaac6gacaGGOaGaamirai abgkHiTiaadQfacaGGPaGaeyOeI0YaaSaaaeaacaaIYaGaam4zaaqa aiabe67a4baacqGHRaWkcaWGdbaaaa@5D27@ (22)

V int MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaciyAaiaac6gacaGG0baabeaaaaa@39CB@ = velocity of the interface between kick fluid and drill mud

Solution for the square of interface velocity will assume the following boundary condition:

Z= Z 0 , V int =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfacqGH9a qpcaWGAbWaaSbaaSqaaiaaicdaaeqaaOGaaiilamaaBaaaleaadaWg aaadbaaabeaaaSqabaGccaWGwbWaaSbaaSqaaiGacMgacaGGUbGaai iDaaqabaGccqGH9aqpcaaIWaaaaa@4067@ (23)

Substituting these boundary conditions and solving for the integration constant, , gives the interface velocity as:

V int 2 = ζ D ln( Z DZ )+λln(DZ) 2g ξ ζ D ln( Z 0 D Z 0 )λln( D Z 0 )+ 2g ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaqhaa WcbaGaciyAaiaac6gacaGG0baabaGaaGOmaaaakiabg2da9maalaaa baGaeqOTdOhabaGaamiraaaaciGGSbGaaiOBamaabmaabaWaaSaaae aacaWGAbaabaGaamiraiabgkHiTiaadQfaaaaacaGLOaGaayzkaaGa ey4kaSIaeq4UdWMaciiBaiaac6gacaGGOaGaamiraiabgkHiTiaadQ facaGGPaGaeyOeI0YaaSaaaeaacaaIYaGaam4zaaqaaiabe67a4baa cqGHsisldaWcaaqaaiabeA7a6bqaaiaadseaaaGaciiBaiaac6gada qadaqaamaalaaabaGaamOwamaaBaaaleaacaaIWaaabeaaaOqaaiaa dseacqGHsislcaWGAbWaaSbaaSqaaiaaicdaaeqaaaaaaOGaayjkai aawMcaaiabgkHiTiabeU7aSjGacYgacaGGUbWaaeWaaeaacaWGebGa eyOeI0IaamOwamaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaai abgUcaRmaalaaabaGaaGOmaiaadEgaaeaacqaH+oaEaaaaaa@6C33@ (24a)

This implies:

V int 2 = ζ D ln( Z DZ )+λln(DZ) ζ D ln( Z 0 D Z 0 )λln( D Z 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaqhaa WcbaGaciyAaiaac6gacaGG0baabaGaaGOmaaaakiabg2da9maalaaa baGaeqOTdOhabaGaamiraaaaciGGSbGaaiOBamaabmaabaWaaSaaae aacaWGAbaabaGaamiraiabgkHiTiaadQfaaaaacaGLOaGaayzkaaGa ey4kaSIaeq4UdWMaciiBaiaac6gacaGGOaGaamiraiabgkHiTiaadQ facaGGPaGaeyOeI0YaaSaaaeaacqaH2oGEaeaacaWGebaaaiGacYga caGGUbWaaeWaaeaadaWcaaqaaiaadQfadaWgaaWcbaGaaGimaaqaba aakeaacaWGebGaeyOeI0IaamOwamaaBaaaleaacaaIWaaabeaaaaaa kiaawIcacaGLPaaacqGHsislcqaH7oaBciGGSbGaaiOBamaabmaaba GaamiraiabgkHiTiaadQfadaWgaaWcbaGaaGimaaqabaaakiaawIca caGLPaaaaaa@636E@ (24b)

Setting, ζ D ln( Z 0 D Z 0 )λln( D Z 0 )=η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTmaala aabaGaeqOTdOhabaGaamiraaaaciGGSbGaaiOBamaabmaabaWaaSaa aeaacaWGAbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaamiraiabgkHiTi aadQfadaWgaaWcbaGaaGimaaqabaaaaaGccaGLOaGaayzkaaGaeyOe I0Iaeq4UdWMaciiBaiaac6gadaqadaqaaiaadseacqGHsislcaWGAb WaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaGaeyypa0Jaeq4T dGgaaa@4E84@

Eq. (24b) becomes:

V int 2 = ζ D ln( Z DZ )+λln(DZ)+η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaqhaa WcbaGaciyAaiaac6gacaGG0baabaGaaGOmaaaakiabg2da9maalaaa baGaeqOTdOhabaGaamiraaaaciGGSbGaaiOBamaabmaabaWaaSaaae aacaWGAbaabaGaamiraiabgkHiTiaadQfaaaaacaGLOaGaayzkaaGa ey4kaSIaeq4UdWMaciiBaiaac6gacaGGOaGaamiraiabgkHiTiaadQ facaGGPaGaey4kaSIaeq4TdGgaaa@5015@ 25

The final velocity equation gives:

V int = [ { ζ D ln( Z DZ )+λln( DZ )+η } ] 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaciyAaiaac6gacaGG0baabeaakiabg2da9maadmaabaWaaiWa aeaadaWcaaqaaiabeA7a6bqaaiaadseaaaGaciiBaiaac6gadaqada qaamaalaaabaGaamOwaaqaaiaadseacqGHsislcaWGAbaaaaGaayjk aiaawMcaaiabgUcaRiabeU7aSjGacYgacaGGUbWaaeWaaeaacaWGeb GaeyOeI0IaamOwaaGaayjkaiaawMcaaiabgUcaRiabeE7aObGaay5E aiaaw2haaaGaay5waiaaw2faamaaCaaaleqabaWaaSGbaeaacaaIXa aabaGaaGOmaaaaaaaaaa@5565@ (26)

The series expansion is truncated at the third term assuming the depth of the well is too big to render subsequent terms negligible. Thus:

V int = ζln( Z D )+λln( D )η( ζ D 2 λ D )Z( λ 2 D 2 ) Z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaciyAaiaac6gacaGG0baabeaakiabg2da9maakaaabaGaeqOT dONaciiBaiaac6gadaqadaqaamaalaaabaGaamOwaaqaaiaadseaaa aacaGLOaGaayzkaaGaey4kaSIaeq4UdWMaciiBaiaac6gadaqadaqa aiaadseaaiaawIcacaGLPaaacqGHsislcqaH3oaAcqGHsisldaqada qaamaalaaabaGaeqOTdOhabaGaamiramaaCaaaleqabaGaaGOmaaaa aaGccqGHsisldaWcaaqaaiabeU7aSbqaaiaadseaaaaacaGLOaGaay zkaaGaamOwaiabgkHiTmaabmaabaWaaSaaaeaacqaH7oaBaeaacaaI YaGaamiramaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaaca WGAbWaaWbaaSqabeaacaaIYaaaaaqabaaaaa@5E04@ (27)

Velocity isthe time derivative of distance as:

V int = dZ dt = ζln( Z D )+λln( D )η( ζ D 2 λ D )Z( λ 2 D 2 ) Z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaciyAaiaac6gacaGG0baabeaakiabg2da9maalaaabaGaamiz aiaadQfaaeaacaWGKbGaamiDaaaacqGH9aqpdaGcaaqaaiabeA7a6j GacYgacaGGUbWaaeWaaeaadaWcaaqaaiaadQfaaeaacaWGebaaaaGa ayjkaiaawMcaaiabgUcaRiabeU7aSjGacYgacaGGUbWaaeWaaeaaca WGebaacaGLOaGaayzkaaGaeyOeI0Iaeq4TdGMaeyOeI0YaaeWaaeaa daWcaaqaaiabeA7a6bqaaiaadseadaahaaWcbeqaaiaaikdaaaaaaO GaeyOeI0YaaSaaaeaacqaH7oaBaeaacaWGebaaaaGaayjkaiaawMca aiaadQfacqGHsisldaqadaqaamaalaaabaGaeq4UdWgabaGaaGOmai aadseadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaamOw amaaCaaaleqabaGaaGOmaaaaaeqaaaaa@62C4@ (28)

This links time to distance as:

t= Z= Z 0 Z [ ζln( Z D )+λln( D )η( ζ D 2 λ D )Z λ 2D ] 1 dZ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpdaWdXaqaamaadmaabaWaaOaaaeaacqaH2oGEciGGSbGaaiOBamaa bmaabaWaaSaaaeaacaWGAbaabaGaamiraaaaaiaawIcacaGLPaaacq GHRaWkcqaH7oaBciGGSbGaaiOBamaabmaabaGaamiraaGaayjkaiaa wMcaaiabgkHiTiabeE7aOjabgkHiTmaabmaabaWaaSaaaeaacqaH2o GEaeaacaWGebWaaWbaaSqabeaacaaIYaaaaaaakiabgkHiTmaalaaa baGaeq4UdWgabaGaamiraaaaaiaawIcacaGLPaaacaWGAbGaeyOeI0 YaaSaaaeaacqaH7oaBaeaacaaIYaGaamiraaaaaSqabaaakiaawUfa caGLDbaadaahaaWcbeqaaiabgkHiTiaaigdaaaaabaGaamOwaiabg2 da9iaadQfadaWgaaadbaGaaGimaaqabaaaleaacaWGAbaaniabgUIi YdGccaWGKbGaamOwaaaa@6330@ (29)

Interface velocity at wellhead

The actual distance travelled by the upper interface of the mud-kick gas system is given as;

Z * =Z Z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaahaa WcbeqaaiaacQcaaaGccqGH9aqpcaWGAbGaeyOeI0IaamOwamaaBaaa leaacaaIWaaabeaaaaa@3C46@ (30)

Where:

Z * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaahaa WcbeqaaiaacQcaaaaaaa@37A5@ = actual distance travelled by the upper interface

Z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaWgaa WcbaGaaGimaaqabaaaaa@37B0@ = initial kick gas thickness in the annular space

Thus:

d Z * dt = dZ dt d Z 0 dt = dZ dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadQfadaahaaWcbeqaaiaacQcaaaaakeaacaWGKbGaamiDaaaa cqGH9aqpdaWcaaqaaiaadsgacaWGAbaabaGaamizaiaadshaaaGaey OeI0YaaSaaaeaacaWGKbGaamOwamaaBaaaleaacaaIWaaabeaaaOqa aiaadsgacaWG0baaaiabg2da9maalaaabaGaamizaiaadQfaaeaaca WGKbGaamiDaaaaaaa@49A1@ (31)

This means when the upper interface gets to the well head, the distance travelled will be:

Z * =D Z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaahaa WcbeqaaiaacQcaaaGccqGH9aqpcaWGebGaeyOeI0IaamOwamaaBaaa leaacaaIWaaabeaaaaa@3C30@ (32)

Equation (26) can be interpreted from two possible scenarios, following the sudden influx of a kick fluid into the well bore. Thus, for a very deep well with a very thick initial mud column above the kick fluid with an initial column thickness, the gas kick will expand against a significant load of mud column and eventually come to rest. During this time period of expansion, there will be a continuous pit gain following the initial pit gain. When the interface eventually comes to rest in the annular column, additional pit gain will cease. The interface velocity will be zero. Equating Eq. (26) to 0 gives:

0= [ { ζ D ln( Z DZ )+λln( DZ )+η } ] 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaicdacqGH9a qpdaWadaqaamaacmaabaWaaSaaaeaacqaH2oGEaeaacaWGebaaaiGa cYgacaGGUbWaaeWaaeaadaWcaaqaaiaadQfaaeaacaWGebGaeyOeI0 IaamOwaaaaaiaawIcacaGLPaaacqGHRaWkcqaH7oaBciGGSbGaaiOB amaabmaabaGaamiraiabgkHiTiaadQfaaiaawIcacaGLPaaacqGHRa WkcqaH3oaAaiaawUhacaGL9baaaiaawUfacaGLDbaadaahaaWcbeqa amaalyaabaGaaGymaaqaaiaaikdaaaaaaaaa@5235@ (33)

If Z f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaWgaa WcbaGaamOzaaqabaaaaa@37E1@ is the solution to Eq. (33), the additional distance travelled by the interface is given:

Z f Z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaWgaa WcbaGaamOzaaqabaGccqGHsislcaWGAbWaaSbaaSqaaiaaicdaaeqa aaaa@3A9D@

However, for a shallow well where the volume of influx is quite significant with a small thicknessof drill mud column above the initial interface, expansion of the kick fluid results in the interface reaching well head. Under this condition, the solution to Eq. (26) gives the velocity of the interface at well head and permitssetting . Thus:

V D = [ { ζ D ln( D Z 0 Z 0 )+λln( DD+ Z o )+η } ] 1/2 = [ ζ D ln( D Z 0 1 )+λln( Z 0 )+η ] 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaamiraaqabaGccqGH9aqpdaWadaqaamaacmaabaWaaSaaaeaa cqaH2oGEaeaacaWGebaaaiGacYgacaGGUbWaaeWaaeaadaWcaaqaai aadseacqGHsislcaWGAbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaamOw amaaBaaaleaacaaIWaaabeaaaaaakiaawIcacaGLPaaacqGHRaWkcq aH7oaBciGGSbGaaiOBamaabmaabaGaamiraiabgkHiTiaadseacqGH RaWkcaWGAbWaaSbaaSqaaiaad+gaaeqaaaGccaGLOaGaayzkaaGaey 4kaSIaeq4TdGgacaGL7bGaayzFaaaacaGLBbGaayzxaaWaaWbaaSqa beaadaWcgaqaaiaaigdaaeaacaaIYaaaaaaakiabg2da9maadmaaba WaaSaaaeaacqaH2oGEaeaacaWGebaaaiGacYgacaGGUbWaaeWaaeaa daWcaaqaaiaadseaaeaacaWGAbWaaSbaaSqaaiaaicdaaeqaaaaaki abgkHiTiaaigdaaiaawIcacaGLPaaacqGHRaWkcqaH7oaBciGGSbGa aiOBamaabmaabaGaamOwamaaBaaaleaacaaIWaaabeaaaOGaayjkai aawMcaaiabgUcaRiabeE7aObGaay5waiaaw2faamaaCaaaleqabaWa aSGbaeaacaaIXaaabaGaaGOmaaaaaaaaaa@7179@ (34)

Where:

V D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaamiraaqabaaaaa@37BB@ = interface velocity at well head

The situation described by Eq.(34) leads to a complete mud loos in the hole, which can lead to eminent blowout.

Flux of mud in annular space

The existence of interface velocity means there will be a definite mud flux in the annular space defined as the mass flow rate of drill mud per unit annular cross sectional area. At this point, it is appropriate to divide the motion of drill mud above the upper interface of the mud-gas kick system into two with different motion characteristics. In this regard, it is intuitive to accept that as the kick fluid begins to expand, the column of mud above the upper interface will have two distinct velocity zones, such that close to the interface, the volume of mud will have velocity equal to that of the interface. Also, far away from the interface, the velocity will be different. Tarvin22 equated gas rising velocity through mud to the product of the velocity of mud just above the gas and a factor plus the slip velocity of the gas as:

V g =K V m + V s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaam4zaaqabaGccqGH9aqpcaWGlbGaamOvamaaBaaaleaacaWG TbaabeaakiabgUcaRiaadAfadaWgaaWcbaGaam4Caaqabaaaaa@3EA2@ (35)

Where:

V g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaam4zaaqabaaaaa@37DE@ = velocity of rising gas

K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeaaaa@36BB@ = factor

V m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaamyBaaqabaaaaa@37E4@ = velocity of mud just above the gas

V s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaam4Caaqabaaaaa@37EA@ = slip velocity of gas

For industrial standard K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeaaaa@36BB@ = 1. Thus:

V g = V m + V s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaam4zaaqabaGccqGH9aqpcaWGwbWaaSbaaSqaaiaad2gaaeqa aOGaey4kaSIaamOvamaaBaaaleaacaWGZbaabeaaaaa@3DD2@ (36)

In the present paper, the distinct zone of the gas kick fluid means the slip velocity is not applicable and this amounts to saying the velocity of mud just above the interface is equal to the velocity of the interface. This equation supports the assumption of the present paper that the velocity of mud just above the interface is equal to the interface velocity. Consequently, the mass flux of drill mud close to the interface defined as the product of interface velocity and density of drill mud can be written as:

j m = ρ m V= ρ m [ { ζ D ln( Z DZ )+λln( DZ )+η } ] 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQgadaWgaa WcbaGaamyBaaqabaGccqGH9aqpcqaHbpGCdaWgaaWcbaGaamyBaaqa baGccaWGwbGaeyypa0JaeqyWdi3aaSbaaSqaaiaad2gaaeqaaOWaam WaaeaadaGadaqaamaalaaabaGaeqOTdOhabaGaamiraaaaciGGSbGa aiOBamaabmaabaWaaSaaaeaacaWGAbaabaGaamiraiabgkHiTiaadQ faaaaacaGLOaGaayzkaaGaey4kaSIaeq4UdWMaciiBaiaac6gadaqa daqaaiaadseacqGHsislcaWGAbaacaGLOaGaayzkaaGaey4kaSIaeq 4TdGgacaGL7bGaayzFaaaacaGLBbGaayzxaaWaaWbaaSqabeaadaWc gaqaaiaaigdaaeaacaaIYaaaaaaaaaa@5B43@ (37)

Where:

j m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQgadaWgaa WcbaGaamyBaaqabaaaaa@37F8@ = mass flux [kgm-2 s-1]

The mass of mud per unit time in the annular space is, therefore,

m . =0.25π d h 2 ρ m V= [ { ζ D ln( Z DZ )+λln( DZ )+η } ] 1/2 0.25 ρ m π d h 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam yBaaWcbeqaaiaac6caaaGccqGH9aqpcaaIWaGaaiOlaiaaikdacaaI 1aGaeqiWdaNaamizamaaDaaaleaacaWGObaabaGaaGOmaaaakiabeg 8aYnaaBaaaleaacaWGTbaabeaakiaadAfacqGH9aqpdaWadaqaamaa cmaabaWaaSaaaeaacqaH2oGEaeaacaWGebaaaiGacYgacaGGUbWaae WaaeaadaWcaaqaaiaadQfaaeaacaWGebGaeyOeI0IaamOwaaaaaiaa wIcacaGLPaaacqGHRaWkcqaH7oaBciGGSbGaaiOBamaabmaabaGaam iraiabgkHiTiaadQfaaiaawIcacaGLPaaacqGHRaWkcqaH3oaAaiaa wUhacaGL9baaaiaawUfacaGLDbaadaahaaWcbeqaamaalyaabaGaaG ymaaqaaiaaikdaaaaaaOGaaGimaiaac6cacaaIYaGaaGynaiabeg8a YnaaBaaaleaacaWGTbaabeaakiabec8aWjaadsgadaqhaaWcbaGaam iAaaqaaiaaikdaaaaaaa@69FD@ (38)

Where:

j m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQgadaWgaa WcbaGaamyBaaqabaaaaa@37F8@ = kgs-1

m . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam yBaaWcbeqaaiaac6caaaaaaa@37D8@ = mass flow rate

Accordingly, the dynamic pressure, which is the pressure possessed by a flowing fluid is given as:

P dy = 1 2 ρ g kg V int 2 = ρ kg [ { ζ D ln( Z DZ )+λln( DZ )+η } ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaamizaiaadMhaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGa aGOmaaaacqaHbpGCdaWgaaWcbaGaam4zaaqabaGcdaWgaaWcbaGaam 4AaiaadEgaaeqaaOGaamOvamaaDaaaleaaciGGPbGaaiOBaiaacsha aeaacaaIYaaaaOGaeyypa0JaeqyWdi3aaSbaaSqaaiaadUgacaWGNb aabeaakmaadmaabaWaaiWaaeaadaWcaaqaaiabeA7a6bqaaiaadsea aaGaciiBaiaac6gadaqadaqaamaalaaabaGaamOwaaqaaiaadseacq GHsislcaWGAbaaaaGaayjkaiaawMcaaiabgUcaRiabeU7aSjGacYga caGGUbWaaeWaaeaacaWGebGaeyOeI0IaamOwaaGaayjkaiaawMcaai abgUcaRiabeE7aObGaay5Eaiaaw2haaaGaay5waiaaw2faaaaa@62AD@ (39)

Where:

ρ kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaWGRbGaam4zaaqabaaaaa@39B3@ = density of kick gas

Determination of initial annular column thickness of gas kick

Equation (28) and Eq. (32) contain information about the initial annular column thickness of kick gas, Z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaWgaa WcbaGaaGimaaqabaaaaa@37B0@ . Information about this parameter can be obtained from a volume balance equation involving the volume of gas column and the pit gain during the initial influx. Thus:

Z 0 = G A an = G 0.25π d h 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaWgaa WcbaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaadEeaaeaacaWGbbWa aSbaaSqaaiaadggacaWGUbaabeaaaaGccqGH9aqpdaWcaaqaaiaadE eaaeaacaaIWaGaaiOlaiaaikdacaaI1aGaeqiWdaNaamizamaaDaaa leaacaWGObaabaGaaGOmaaaaaaaaaa@45B6@ (40)

Where:

G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEeaaaa@36B7@ = pit gain

d h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa WcbaGaamiAaaqabaaaaa@37ED@ = hydraulic diameter of annular space

With this information, the parameters η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aObaa@3797@  and ς MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awbaa@3790@ can be computed for a given pit gain in barrels and annular hydraulic parameter.

Maximum interface velocity corresponding tomMinimum bottom hole pressure

For all cases considered with or without annular mud circulation, the maximum bottom hole pressure is exerted at the instance of kick gas influx into the annular space. As the kick gas expands in the annular column, annular gas column increases while annular mud column decreases. This causes a gradual decrease in bottom hole pressure until it becomes a minimum when the upper interface of the gas-kick fluid-mud system reaches well head. The following sections will be devoted to the applicability of the interfacial velocity model and discussion.

Applicability of model

Application of the model for interfacial velocity calculation requires the following steps and data:

Step 1: Obtain information about gas kick volume from pit gain

Step 2: Obtain information about hydraulic diameter of hole (dh), by calculating equivalent diameter based on outer diameter of drill pipe assembly and drill collar assembly using equation in.23

Step 3: Obtain information about surface pressure

Step 4: Obtain information about mud density and mud dynamic viscosity

Step 5: Using relevant data, calculate parameters defined by Eq. (14)

Step 6: Calculate interfacial velocity using the appropriate model

Discussion

Relationship of interfacial velocity to expansion of exhaust gases in rocket nozzle

The interface velocity equation in this paper (Eq. (26)) has been derived for the case of an expanding gas in the annular space of a drill hole. This means the interface velocity increases with expansion in the annular column. A dynamic and widely applicable technology related to the expansion of combustion gases is that related to rocket science. In rocket launching technology, a propellant consisting of a mixture of combustion supporting gas (oxygen) and fuel (hydrogen or hydrocarbon gas) is burnt to release a combustion gas that expands through a nozzle (See Figure 5). Figure 5, based on rocket science, is another case of the velocity of gas increasing through expansion like that encountered in the motion of the gas kick fluid-mud system.

<strong>Figure 5 </strong> Expansion of combustion gases through a rocket nozzle.

Figure 5 Expansion of combustion gases through a rocket nozzle.

It is possible to calculate the velocity of the expanding gases at the exit. This velocity is called the exit velocity and it is given as15:

V e = 2γ γ1 R u M T c ( 1 ( P e P c ) ( 1γ )/γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaamyzaaqabaGccqGH9aqpdaGcaaqaamaalaaabaGaaGOmaiab eo7aNbqaaiabeo7aNjabgkHiTiaaigdaaaWaaSaaaeaacaWGsbWaaS baaSqaaiaadwhaaeqaaaGcbaGaamytaaaacaWGubWaaSbaaSqaaiaa dogaaeqaaOWaaeWaaeaacaaIXaGaeyOeI0YaaeWaaeaadaWcaaqaai aadcfadaWgaaWcbaGaamyzaaqabaaakeaacaWGqbWaaSbaaSqaaiaa dogaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaWaaSGbaeaada qadaqaaiaaigdacqGHsislcqaHZoWzaiaawIcacaGLPaaaaeaacqaH ZoWzaaaaaaGccaGLOaGaayzkaaaaleqaaaaa@5327@ (41)

Where:

V e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaamyzaaqabaaaaa@37DC@ = exit velocity

R u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaamyDaaqabaaaaa@37E8@ = universal gas constant

P e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaamyzaaqabaaaaa@37D6@ = exit pressure

T c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaaqabaaaaa@37D8@ = chamber temperature

P c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaam4yaaqabaaaaa@37D4@ = chamber pressure

M = molecular mass of gas:

γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNbaa@3792@ = ratio of apecific heat capacities

The velocity equation at the well head obtained in the present paper is recalled as:

V D = [ ζ D ln( D Z 0 1 )+λln( Z 0 )+η ] 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaamiraaqabaGccqGH9aqpdaWadaqaamaalaaabaGaeqOTdOha baGaamiraaaaciGGSbGaaiOBamaabmaabaWaaSaaaeaacaWGebaaba GaamOwamaaBaaaleaacaaIWaaabeaaaaGccqGHsislcaaIXaaacaGL OaGaayzkaaGaey4kaSIaeq4UdWMaciiBaiaac6gadaqadaqaaiaadQ fadaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaacqGHRaWkcqaH 3oaAaiaawUfacaGLDbaadaahaaWcbeqaamaalyaabaGaaGymaaqaai aaikdaaaaaaaaa@512A@

The parameters are defined as:

2β [ P sur +( D Z 0 ) ρ m g ] Z 0 ρ m =ζ 2 P sur ρ m =λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaGOmai abek7aInaalaaabaWaamWaaeaacaWGqbWaaSbaaSqaaiaadohacaWG 1bGaamOCaaqabaGccqGHRaWkdaqadaqaaiaadseacqGHsislcaWGAb WaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaGaeqyWdi3aaSba aSqaaiaad2gaaeqaaOGaam4zaaGaay5waiaaw2faaiaadQfadaWgaa WcbaGaaGimaaqabaaakeaacqaHbpGCdaWgaaWcbaGaamyBaaqabaaa aOGaeyypa0JaeqOTdOhabaaabaGaaGOmamaalaaabaGaamiuamaaBa aaleaacaWGZbGaamyDaiaadkhaaeqaaaGcbaGaeqyWdi3aaSbaaSqa aiaad2gaaeqaaaaakiabg2da9iabeU7aSbaaaa@59E6@ (17)

Comparison of Eq. (41) to the Eq. (41)and realizing the definitions of the constants in Eq. (17) shows that they all contain the following:

  1. Square root sign
  2. Initial parameters

All parameters that appear in Eq. (41) are not variables.The initial and final parametersin Eq. (42) are chamber pressure, exit pressure and exit velocity respectively. In the case of the velocity equations in this paper, the initial and final parameters are the initial pressure ( D Z 0 ) ρ m g+ P suf = P ib MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iraiabgkHiTiaadQfadaWgaaWcbaGaaGimaaqabaaakiaawIcacaGL PaaacqaHbpGCdaWgaaWcbaGaamyBaaqabaGccaWGNbGaey4kaSIaam iuamaaBaaaleaacaWGZbGaamyDaiaadAgaaeqaaOGaeyypa0Jaamiu amaaBaaaleaacaWGPbGaamOyaaqabaaaaa@4773@ ) and final or surface pressure P suf MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaam4CaiaadwhacaWGMbaabeaaaaa@39C9@ . All other parameters are also constant.

Relationship of interfacial velocity to expansion of a rising bubble through a liquid

The expansion of a rising gas bubble through a liquid is a common occurrence related to the opening of a pressurized fluid in a container, such as beer, wine etc. Brennen24 studied the interface growth rate of a bubble in a liquid. By using a pressure balance approach, he arrived at the following asymptotic growth rate of the interface:

dR dt = { 2( PV P * ) 3 ρ L } 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadkfaaeaacaWGKbGaamiDaaaacqGH9aqpdaGadaqaamaalaaa baGaaGOmamaabmaabaGaamiuaiaadAfacqGHsislcaWGqbWaa0baaS qaaiabg6HiLcqaaiaacQcaaaaakiaawIcacaGLPaaaaeaacaaIZaGa eqyWdi3aaSbaaSqaaiaadYeaaeqaaaaaaOGaay5Eaiaaw2haamaaCa aaleqabaWaaSGbaeaacaaIXaaabaGaaGOmaaaaaaaaaa@4A2F@ (42)

Where:

R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfaaaa@36C2@ = radius of bubble

P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfaaaa@36C0@ = pressure in bubble

V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfaaaa@36C6@ = volume of bubble

P * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaqhaa WcbaGaeyOhIukabaGaaiOkaaaaaaa@390C@ = pressure at an infinite distance from the interface

= density of liquid

In Eq. (52), the velocity of the interface between the expanding bubble and the surrounding liquid is expressed in terms of the rate of increase of bubble radius, which is similar to the distance Z, in Eq. (26). Equation (52) contains a square root sign similar to Eq. (26) in the present paper.

The approach to the derivation if interfacial kick gas velocity is based on a gas slug model. InSoceity of Petroleum Engineers Texbook Series which are standards, the slug flow model has been used for the calculation of kick fluid density and the density of new mud required to drill after the kick fluid has been circulated out.23 Therefore, the theoretical basis of the present paper has industrial significance.

In the literature, different models of gas kick in well bores have been developed in addition to those already cited at the beginning of this paper. Recently, He et al.25  recognized the momentum conservation approach in addition to the mass conservation approach. In the present paper, the momentum conservation method has been central to model development. According to Marshall and Bentsen26 when the depth of the well is less than 1500 meters, the temperature difference of the fluid in the wellbore is less than 25 K. Therefore, to begin a meaningful discussion, the interface velocity equation deserves to be considered. First, to identify various parameters that control it, and second, to understand how they actually control it for the case of a well depth below 1500 meters. In this regard, the effect of the parameters, ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4baa@37AE@ , ζ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA7a6baa@37A8@ and λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@379F@ can be discussed as follows:

The ratio of Reynolds number to hydraulic diameter finally disappears from the interfacial velocity equation while the other two parameters ζ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA7a6baa@37A8@ and λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@379F@ have effects. This means that increasing surface pressure while decreasing mud weight, which is relatedwill cause interfacial velocity to increase. The fact that decreasing mud weight results in interfacial velocity increase predicted by the present model is also supported by the gas drift velocity (Eq.3) of Guo et al.27 Likewise, decreasing surface pressure while increasing mud weight will negatively impact interfacial velocity. A positive effect of the parameter ζ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA7a6baa@37A8@ ,can be realized by decreasing mud weight. Also, the definition of this parameter shows that the depth at which a kick is taken can impact interfacial velocity. In this regard, inspection of Eq. (24a) shows that when a gas kick occurs at a deeper depth, higher interfacial velocities will be experienced if the initial thickness of the kick fluid is smaller. The reason is that deeper depths afford enough time for expansion of the gas kick fluid leading to higher interfacial velocities.

In the study of dynamics, a clear distinction is always drawn btween linear and non-linear dynamics.28 In the former, a body experiences a constant acceleration while in the latter, the acceleration is time variant.The case of a gas kick fluid-mud interface system is a typical example of the non-linear case. In this regard,  if distance is substituted by the product of time and velocity and acceleration is substituted for the second derivate of distance with respect of time, it becomes easy to see from  Eq.(12) that the acceleration is a nonlinear fuction of velocity, which is in turn a  fuction of time as:

acceleration d 2 Z d t 2 =a( V( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izamaaCaaaleqabaGaaGOmaaaakiaadQfaaeaacaWGKbGaamiDamaa CaaaleqabaGaaGOmaaaaaaGccqGH9aqpcaWGHbWaaeWaaeaacaWGwb WaaeWaaeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaaaaa@425D@ .

The interfacial velocity equation also shows that at a given time, the acceleration is also dependent on thermophysical and hydraulic parameters, these being mud density (thermphysical), surface pressure and the ratio of Reynolds number to hydraulic diameter, the latter being a hydraulic parameter.

Equation 26 predicts lower interfacial velocities for deeper depths of kick. The reason is that for deep eper wells, the difference bewtween well depth and interfacial position in the annumral space is bigger. This means for two wells with the same mud weight, surface pressure and wellbore assembly, the interface in a shallower well with the same initial kick fluid volume will havehiger interfacial velocity compared to that of adeeper well.

Equation (34) shows that the magnitude of the interfacial velocity at well head is governed by the ratioof kick depth to the initial gas kick thickness in the annular space given as D/ Z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacaGGVa GaamOwamaaBaaaleaacaaIWaaabeaaaaa@392C@ . The bigger this value, the higher the interfacial velocity at well head. The reason is that smaller values of gas thickness provide the opportunity for more expansion before getting to the well head, resulting in higher velocities. Generally the interfacial velocity will be a maximum at well head because of the depth factor in Eq.(34). This is because the thickness of the kick gas fluid compared to well depth is small. This makes the quatitity in the aurgument of the first logarithm term big. The fact that the interface velocity at well head will be maximum makes the case comparable to that of an exhaust gas from a rocket cumbustion chamber expanding and ecceleation through a divergent nozzle and attaining a maximum exit velocity at the exit.

Time for interface to travel to a given point

When a gas kick is taken during drilling, two notable points in the drill hole are of interest in light of formation fracturing and the occurrence of partial annular mud volume, each of which can cause the kick to degenerate into a blowout. Thenearest point of interest in the annular space  from bottom hole is the formation below the last casing shoe. Figure 6 shows plots of pore pressure and fracture pressure versus depth. Accordingly, the figure shows that lower fracture pressures are encountered at shallower depths.

<strong>Figure 6 </strong> Plots of pore pressure and fracture pressure versus formation depth.

Figure 6 Plots of pore pressure and fracture pressure versus formation depth.

Therefore, the formation below the last casing shoe has the lowest fracture pressure in the next drilling interval. The implication is that for high pressure gas expanding through the annular space and passing the last casing shoe, (See Figure 7), the hydrostatic pressure above the interface plus the pressure in the gas slug cancan exceed the fracture pressure to cause formation fracturing in the vicinity.

<strong>Figure 7 </strong> Schematics of kick gas rise past last casing shoe

Figure 7 Schematics of kick gas rise past last casing shoe

An idea about the time required for the interface to get to the last casing shoe can be obtained by numerically integrating Eq. (24). However, without completing the integration, it is possible to predict the effect of various parameters that appear in the velocity equation.This time is governed by some parameters. They are the following ξ,λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4jaacY cacqaH7oaBaaa@3A12@ and η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aObaa@3797@ . The first two parameters are inversely proportional to mud weight. Therefore, increasing mud weight will decrease the time required for the interface to rise to the last casing shoe environment for a given kick depth and surface pressure. The effect of the third parameter on migration time can be seen by making the following assumptions:

At depth typical of gas kicks, the thickness of the kick fluid is very small compared with formation depth. This assumption permits the parameter to be simplified as:

η= ζ D ln( Z 0 D )λln( D ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabg2 da9iabgkHiTmaalaaabaGaeqOTdOhabaGaamiraaaaciGGSbGaaiOB amaabmaabaWaaSaaaeaacaWGAbWaaSbaaSqaaiaaicdaaeqaaaGcba GaamiraaaaaiaawIcacaGLPaaacqGHsislcqaH7oaBciGGSbGaaiOB amaabmaabaGaamiraaGaayjkaiaawMcaaaaa@490C@

This equation links the importance of the ratio of initial kick fluid thickness to well depth to migration time. Accordingly, it shows that kicks with very small volumes will take longer times to migrate to the last casing shoe environment compared to kick gas fluids of bigger thicknesses.

Relevance of velocity equation to the worst case scenarios of casing running

The case of interfacce velocity at well head representing the lowest bottom hole pressure presented in this paper is directly applicable to casing design issues. Generally, one of the worst case scenarios encountered in casing design is the one related to a complete mud loss, where bottom hole pressure atagiven depth becomes atmospheric. In the practice of casing running, this can become possible because of excessive surge pressures that develop in response to annular mud flow along casing pipes following casing pipebody displacement of annular mud.29 The dynamic friction pressure drop, when pipe lowering velocity exceeds a maximum value coupled with the hydrostatic pressure due to mud column at a depth can be high enough to exceed the fracture pressure at that depth, leading to fracturing which can cause whole mud loss. Therefore, under such conditions, the take home message of this paper is that if surge pressures were high enough to induce fracturing near bottom hole, then initial gas kick fluids with smaller volumes will take longer times to reach well head compared to those with bigger volumes. Accordingly, since higher pressures are encountered at deeper depths, the likelihood of  biggerkick gas volumes being encountered at deeper depths causing substantial pit gains is higher. The modeling in this paper also shows the importance of higher surface pressures in suppressing gas kick fluid annular migration, where higher surface pressure translate to lower velocities and viceversa.

Generally, the behavior of a nonlinear  system is described by a nonlinear system of equations. An alternative approach involves a description where the unknown function appears as a variable of another polynomialdegree higher than one. In this paper, we have shown mathematically, using momentum  balance approach that the acceleration of a kick gas-mud interface in the annular space of a well bore can be described by a non linear combination of velocity and distance. Nonlinear dynamical systems that describe changes in variables with time can become chaotic, upredictable, or counterintuitive, being distinct from linear systems and that is why an insight into the nonlinear aspect of kick fluid dynamics is critical to efficient well control during drilling operations. At least, the non linearity of the interface dynamics revealed by this paper is a reminder that, to avoid chaos or unpredictability setting in during kick events, minimum response time for initiating effective well control measures is required on thepart of the drilling crew. This requirement can only be met where experienced hands are on the job.

In this paper, the established principle of momentum conservation in fluid flow has been used to derive the interface velocity of an expanding gas kick fluid in the annular space of a gas wellbore. The practical aspect  of the derived equation has been discussed. What is more, the similarity of the derived equation to those of systems with non linear behavior has been pointed out.The following sum up the conclusion of this paper.

Conclusion

  1. The motion of the interface of a gas kick-mud system is non-linear
  2. The interface accelerates and achieves a maximum value when it gets to well head, where the pressure becomes atmospheric.
  3. Lower mud weight will result in a higher interfacial velocity
  4. Higher surface pressures will result in lower interfacial velocities

Acknowledgements

We wish to acknowledge the immense support given by both Dalhousie University and Cape Breton University Library Document Delivery sections, particularly for their timely delivery of literature resources without which the timely completion of this manuscript would not have been possible.

Nomenclature

C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeaaaa@36B3@ = constant of integration

constant of integration for no annular mud flow

D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseaaaa@36B4@ = depth of well at the time of the kick event

g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgaaaa@36D7@ = acceleration due to gravity

G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEeaaaa@36B7@ = pit gain

d h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa WcbaGaamiAaaqabaaaaa@37ED@ = hydraulic diameter of annular space

P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfaaaa@36C0@ = pressure in then flowing fluid

P surf MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaam4CaiaadwhacaWGYbGaamOzaaqabaaaaa@3AC0@ = surface pressure

Z o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaWgaa WcbaGaam4Baaqabaaaaa@37EA@ = initial column thickness of kick fluid

P ib MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaamyAaiaadkgaaeqaaaaa@38C1@ = initial bottom hole pressure

P suf MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaam4CaiaadwhacaWGMbaabeaaaaa@39C9@ = surface pressure

T Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamOwaaqabaaaaa@37CF@ = temperature at annular position Z

j m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQgadaWgaa WcbaGaamyBaaqabaaaaa@37F8@ = mass flux

Z o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaWgaa WcbaGaam4Baaqabaaaaa@37EA@ = initial column thickness of kick fluid

Z Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaWgaa WcbaGaamOwaaqabaaaaa@37D5@ = gas compressibility factor at annular position Z

T Z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamOwamaaBaaameaacaaIWaaabeaaaSqabaaaaa@38C1@ = temperature at annular position

Z Z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaWgaa WcbaGaamOwamaaBaaameaacaaIWaaabeaaaSqabaaaaa@38C7@ = gas compressibility factor at annular position Z

V D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaamiraaqabaaaaa@37BB@ = interface velocity at well head

Greek Letters

β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIbaa@378C@ = parameter relating to temperature ratios

ρ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaaIXaaabeaaaaa@3892@ = density of component one

ρ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaaIYaaabeaaaaa@3893@ = density of component 2

ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMbaa@37B3@ = volume fraction of component 1

β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIbaa@378C@ = Temperature dependent parameter

References

  1. Pavel D, Grayson B. Advanced pressure control improves kick, loss detection. Oil Gas J. 2010.
  2. Nickens HV. A dynamic computer model of a kicking well. SPE Drill Eng. 1987;2(02):159–173.
  3. Johnson AB, Cooper S. Gas migration velocities during gas kicks in deviated wells. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers; 1993.
  4. Gravdal JE. Real-time evaluation of kick during managed pressure drilling based on wired drill pipe telemetry. In: International Petroleum Technology Conference. International Petroleum Technology Conference; 2009.
  5. Swanson BW, Gilvary B, McEwan F. Experimental measurement and modeling of gas solubility in invert emulsion drilling fluids explains surface observations during kicks. In: European Petroleum Conference. Society of Petroleum Engineers; 1988.
  6. Aarsnes UJF, Ambrus A, Vajargah AK, Aamo OM, van Oort E. A simplified gas-liquid flow model for kick mitigation and control during drilling operations. In: ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers; 2015:V002T20A002–V002T20A002.
  7. Gravdal JE, Lorentzen RJ, Fjelde K-K, Vefring EH. Tuning of computer model parameters in managed-pressure drilling applications using an unscented-kalman-filter technique. SPE J. 2010;15(03):856–866.
  8. Shihui S, Tie Y, Xueliang B, Xun C, Nan Z. Wellbore Flow Analysis of a Gas-Kick Well During Shut-In. Open Fuels Energy Sci J. 2015;8(1).
  9. Zhou J, Stamnes ØN, Aamo OM, Kaasa G-O. Switched Control for Pressure Regulation and Kick Attenuation in a Managed Pressure Drilling System. IEEE Trans Control Syst Technol. 2011;19(2):337-350. doi:10.1109/TCST.2010.2046517
  10. Nunes JOL, Bannwart AC, Ribeiro PR. Mathematical modeling of gas kicks in deep water scenario. In: IADC/SPE Asia Pacific Drilling Technology. Society of Petroleum Engineers; 2002.
  11. Hoberock LL, Stanbery SR. Pressure Dynamics in Wells During Gas Kicks: Part 1-Component Models and Results. J Pet Technol. 1981;33(08):1–357.
  12. Orkiszewski J. Predicting two-phase pressure drops in vertical pipe. J Pet Technol. 1967;19(06):829–838.
  13. Santos OLA. A mathematical model of a gas kick when drilling in deep waters. 1982.
  14. Ohara S. Improved Method for Selecting Kick Tolerance During Deepwater Drilling Operations. 1996.
  15. Taylor TS. Introduction to Rocket Science and Engineering. CRC Press; 2017.
  16. Leblanc JL, Lewis RL. A mathematical model of a gas kick. J Pet Technol. 1968;20(08):888–898.
  17. Xie J, Zhang X, Tang Y, Wang Y, Shao Q, Yu B. Transient simulation of the blowing-out process of the air pockets in vertical wellbore. Appl Therm Eng. 2014;72(1):97-103. doi:10.1016/j.applthermaleng.2014.01.063
  18. Ferziger JH, Peric M. Computational Methods for Fluid Dynamics. Springer Science & Business Media; 2012.
  19. Teletov SG. Problems of the hydrodynamics of two–phase mixtures. I. MGU Bull. 1958;2:15–27.
  20. Rice RG, Do DD. Applied Mathematics and Modeling for Chemical Engineers. John Wiley & Sons; 2012.
  21. Das AK, Smith JR, Frink PJ. Simulations comparing different initial responses to kicks taken during managed pressure drilling. In: IADC/SPE Drilling Conference. Society of Petroleum Engineers; 2008.
  22. Tarvin JA. Gas rises rapidly through drilling mud. In: SPE/IADC Drilling Conference. Society of Petroleum Engineers; 1994.
  23. Bourgoyne A, Millheim K, Chenevert M, Young Jr F. Applied Drilling Engineering. Vol 2. Society of Petroleum Engineering; 1991.
  24. Brennen CE. Bubble Growth and Collapse. In: Cavitation and Bubble Dynamics. New York: Oxford University Press; 1995:100-127. https://authors.library.caltech.edu/25021/1/chap4.pdf.
  25. He M, Liu G, Li J, et al. Study of sour gas kicks taken during managed pressure drilling operations. In: SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Society of Petroleum Engineers; 2015.
  26. Marshall DW, Bentsen RG. A computer model to determine the temperature distributions in a wellbore. J Can Pet Technol. 1982;21(01).
  27. Guo Y, Sun B, Gao Y, Li H, Wu C. Gas kick during carbonate reservoirs drilling and its risk assessment. Pet Explor Dev. 2017;44(3):462-469. doi:10.1016/S1876-3804(17)30053-8
  28. Pier B, Schmid PJ. Linear and nonlinear dynamics of pulsatile channel flow. J Fluid Mech. 2017;815:435–480.
  29. Mme U, Skalle P. Effects of mud properties, hole size, drill string tripping speed and configurations on swab and surge pressure magnitude during drilling operations. Int J Pet Sci Technol. 2012:143–153.

Copyright© 2018 Amadu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.